It is really difficult to dissolve the sulfur substance because not only is it polar, but it is composed of long S-chains and not only atoms. So, water cannot dissolve the sulfur because nonpolar compounds do not dissolve in polar solvents. Sulfur doesn't always dissolve with nonpolar solvents, as well. However, since carbon disulfide also contains S-chains, it is the best solvent that would dissolve sulfur.
Answer:

Explanation:
A galvanic cell is composed of two electrodes immersed in a suitable electrolyte and connected via a salt bridge. One of the electrodes serves as a cathode where reduction or gain of electrons takes place. The other half cell functions as an anode where oxidation or loss of electrons occurs.
The representation is given by writing the anode on left hand side followed by its ion with its molar concentration. It is followed by a salt bridge. Then the cathodic ion with its molar concentration is written and then the cathode.
As it is given that cadmium acts as anode, it must be on the left hand side and copper must be on right hand side.

The correct answer is option B. When the forward and reverse paths of a change occur at the same rate, <span>the system is in equilibrium specifically in dynamic equilibrium.</span> Dynamic equilibrium is
the balance in a process that is continuing. It is achieved in a reaction when
the forward rate of reaction and the backward rate of reaction is at the same
value or equal.
We have Kc = 4.2 x 10^-2 (given but missing in the question)
and When the balanced equation for this reaction is:
PCl5(g) ↔ PCl3(g) + Cl2(g)
so, according to the Kc formula:
Kc = the concentration of products / the concentration of the reactants
so, to get the concentration of the reactants in equilibrium, the concentration of the products / the concentration of the reactants should equal the Kc value which is given in the question (missing in your question).
So by substitution in Kc formula:
Kc = [PCl3]*[Cl2] / [PCl5]
4.2 x 10^-2 = 0.18 * 0.25 /[PCl5]
∴[PCl5] = 0.18*0.25 / 4.2x10^-2 = 1.07
So the concentration of the reactants in equilibrim = 1.07