Answer: An aspect of the event of various types of balls bouncing off the same floor, being matter is that all the balls consist of matter. They all occupy space and have a form of energy when moved by a force, such as a person. And for energy, like I just said, when they bounce they create energy as they bounce up and down, so if the ball were to hit some other object, it would have an impact on the still object.
The combination of the material properties of a ball (surface textures, actual materials, amount of air, hardness/ softness, and so on) affects the height of its bounce.
Hope this helps.......... Stay safe and have a Merry Christmas!!!!!!!!!! :D
Explanation:
Answer:
Theory
Explanation:
Conservation of energy is explained as a scientific law and not a theory because it does not explain why energy is conserved.
A law is a the statement of a scientific fact. It is a product of repeated experiment and observation through time. Most laws do not explain the reason for the logic behind their premise.
A theory on the other hand provides an explanation for an observed phenomenon. Most theories are no immutable. They are often changed when new finds are reported or made.
Laws are immutable and they stand still.
☁️ Answer ☁️
annyeonghaseyo!
Your answer is:
"A waterwheel built in Hamah, Syria, has a radius of 20.0 m. If the tangential velocity at the wheel’s edge is 7.85 m/s" -Ggle
Hope it helps.
Have a nice day noona/hyung!~  ̄▽ ̄❤️
At the highest point in its trajectory, the ball's acceleration is zero but its velocity is not zero.
<h3>What's the velocity of the ball at the highest point of the trajectory?</h3>
- At the highest point, the ball doesn't go more high. So its vertical velocity is zero.
- However, the ball moves horizontal, so its horizontal component of velocity is non - zero i.e. u×cosθ.
- u= initial velocity, θ= angle of projection
<h3>What's the acceleration of the ball at the highest point of projectile?</h3>
- During the whole projectile motion, the earth exerts the gravitational force with a acceleration of gravity along vertical direction.
- But as there's no acceleration along vertical direction, so the acceleration along vertical direction is zero.
Thus, we can conclude that the acceleration is zero and velocity is non-zero at the highest point projectile motion.
Disclaimer: The question was given incomplete on the portal. Here is the complete question.
Question: Player kicks a soccer ball in a high arc toward the opponent's goal. At the highest point in its trajectory
A- neither the ball's velocity nor its acceleration are zero.
B- the ball's acceleration points upward.
C- the ball's acceleration is zero but its velocity is not zero.
D- the ball's velocity points downward.
Learn more about the projectile motion here:
brainly.com/question/24216590
#SPJ1