The total momentum is unchanged according to the law of conservation of momentum. When the gun is fired, the bullet gains a high velocity forward (positive velocity), and that velocity multiplied by its mass is the momentum the bullet gains. Therefore, the gun must gain a momentum backwards to cancel out that momentum forward, so the gun recoils back with a negative velocity.
Answer:
a. Capacitance
b. Charge on the plates
e. Energy stored in the capacitor
Explanation:
Let A be the area of the capacitor plate
The capacitance of a capacitor is given as;

where;
V is the potential difference between the plates
The charge on the plates is given as;

The energy stored in the capacitor is given as;

Thus, the physical variables listed that will change include;
a. Capacitance
b. Charge on the plates
e. Energy stored in the capacitor
<u>Answer:</u> The voltage needed is 35.7 V
<u>Explanation:</u>
Assuming that the resistors are arranged in parallel combination.
For the resistors arranged in parallel combination:

We are given:

Using above equation, we get:

Calculating the voltage by using Ohm's law:
.....(1)
where,
V = voltage applied
I = Current = 3.75 A
R = Resistance = 
Putting values in equation 1, we get:

Hence, the voltage needed is 35.7 V
You'll never get the correct answer without the correct conversion factor. Note carefully that you have no decimal. It should be
<span>1 km = 0.6214 miles </span>
<span>1000 m = 1 km </span>
<span>60 seconds = 1 minute </span>
<span>60 minutes = 1 hour. </span>
<span>2.998E8 m/s x (1 km/1000m) x (0.6214 miles/km) x (60 sec/min) x (60 min/hr) = ?</span>
The upward force exerted on the board by the support is 530.8 N.
<h3>Upward force exerted on the board by the support</h3>
The sum of the upward forces is equal to sum of downward forces;
total downward forces = 52.8 N + 206 N + 272 N = 530.8 N
downward force = upward force = 530.8 N
Thus, the upward force exerted on the board by the support is 530.8 N.
Learn more about upward force here: brainly.com/question/6080367
#SPJ1