The electric force between the two particles are calculated through the equation,
F = kQ₁Q₂ / d²
where F is the force, k is a constant called Coulomb's law constant, Q₁ and Q₂ are the charges, and d is the distance. This equation is called the Coulomb's law.
It can be seen from the equation above that the electric forces between the objects are majorly affected by the substance's charges and distance.
The answer to this item is therefore letter A.
Sound waves are changes in pressure generated by vibrating molecules. The physical characteristics of sound waves influence the three psychological features of sound: loudness, pitch, and timbre. Loudness depends on the amplitude,or height, of sound waves. The greater the amplitude, the louder the sound perceived.
E = <u>kQ</u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u>
(r + h)²
where,
k = 9 × 10^9Nm²C^-2
Q = total charge, 300uC = 300 × 10^ -6C
r = 8 × 10^ -2m
h = 16 × 10^ -2m
then,
E = <u>9</u><u>e</u><u>9</u><u> </u><u>*</u><u> </u><u>3</u><u>0</u><u>0</u><u>e</u><u>^</u><u>-</u><u>6</u><u> </u><u> </u><u> </u><u> </u>
(8e^-2 + 16e^-2)²
E = 4687500N/C
Answer:
delta r(x) = (delta (r)) * cos(alpha), delta r(y) = (delta(r)) * sin(alpha)
Explanation:
Well it's a simple rule I guess...
Answer: 750 kgm/s
Explanation:
Mass of object = 25 kg
Speed by which object moves =30 m/s. Linear momentum of the object = ?
Since momentum refers to the quantity of motion of the moving object,
Linear momentum = Mass x Speed
= 25kg x 30m/s
= 750 kgm/s
Thus, the linear momentum of the object is 750 kgm/s