1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kirill115 [55]
3 years ago
8

Let V be the volume of the pyramid of height 11 whose base is a square of side length 6. Find a formula for the area A of the ho

rizontal cross section at a height y.
Mathematics
1 answer:
Rainbow [258]3 years ago
7 0

Answer:

Base area = 36

Volume of the pyramid = 132

Step-by-step explanation:

Volume of a pyramid = Base Area × Height/3

Base area = Length × Length (since base of the pyramid is a square)

Given the side length of the square = 6

Base area = 6×6

Base area = 36

Given height of pyramid =11

Volume of the pyramid = 36×11/3

Volume of the pyramid = 12×11

Volume of the pyramid = 132

You might be interested in
Please help me!!!<br><br> Hhhhhhhhhhhhhh
vekshin1

Answer:

C: -|x| + 3

Step-by-step explanation:

From the graph, we see that when y = 2, x is either +1 or -1

Also,when y = 1, x = +2 or -2

Thus,we can say that;

y = (-x) + 3 or -(x - 3)

So, we can write this in absolute value form as; y = -|x| + 3

4 0
3 years ago
Kyle Lowry earned $31.2 million in US dollars playing for the Toronto Raptors during the 2018–2019 season. How much was he earni
liraira [26]

Answer:

I think C or D not sure about the question answer

6 0
3 years ago
What is the sum of the geometric series
Sergio039 [100]
Answer: 2343 / 256

Explanation

I will do this for you in two forms: 1) adding each term, and 2) using the general formula for the sum of geometric series.

1) Adding the terms:

 4
∑ 3 (3/4)^i = 3 (3/4)^0 + 3 (3/4)^1 + 3 (3/4)^2 + 3 (3/4)^3 + 3 (3/4)^4
i=0

= 3 + 9/4 + 27/16 + 81/64 + 243/256 = [256*3 + 27*16 + 64*9 + 4*81 + 243] / 256 =

= 2343 / 256

2) Using the formula:

n-1
∑ A (r^i) = A [1 - r^(n) ] / [ 1 - r]
i=0

Here n - 1 = 4 => n = 5

r = 3/4

A = 3

Therefore the sum is 3 [ 1 - (3/4)^5 ] / [ 1 - (3/4) ] =

= 3 [ 1 - (3^5) / (4^5) ] / [ 1/4 ] = 3 { [ (4^5) - (3^5) ] / (4^5) } / {1/4} =

= (3 * 781) / (4^5) / (1/4) =  3 * 781 / (4^4) = 2343 / 256

So, no doubt, the answer is 2343 / 256
5 0
3 years ago
Write a real world scenario that matches the following equation. 15+3h=30 Then solve for the equation
arsen [322]
Bowling costs 15 dollars per person and 3 is amount of money per game it cost to play. If you play 5 games then you pay a total of 30 dollars. 
7 0
3 years ago
La potencia que se obtiene de elevar a un mismo exponente un numero racional y su opuesto es la misma verdadero o falso?
malfutka [58]

Answer:

Falso.

Step-by-step explanation:

Sea d = \frac{a}{b} un número racional, donde a, b \in \mathbb{R} y b \neq 0, su opuesto es un número real c = -\left(\frac{a}{b} \right). En el caso de elevarse a un exponente dado, hay que comprobar cinco casos:

(a) <em>El exponente es cero.</em>

(b) <em>El exponente es un negativo impar.</em>

(c) <em>El exponente es un negativo par.</em>

(d) <em>El exponente es un positivo impar.</em>

(e) <em>El exponente es un positivo par.</em>

(a) El exponente es cero:

Toda potencia elevada a la cero es igual a uno. En consecuencia, c = d = 1. La proposición es verdadera.

(b) El exponente es un negativo impar:

Considérese las siguientes expresiones:

d' = d^{-n} y c' = c^{-n}

Al aplicar las definiciones anteriores y las operaciones del Álgebra de los números reales tenemos el siguiente desarrollo:

d' = \left(\frac{a}{b} \right)^{-n} y c' = \left[-\left(\frac{a}{b} \right)\right]^{-n}

d' = \left(\frac{a}{b} \right)^{(-1)\cdot n} y c' = \left[(-1)\cdot \left(\frac{a}{b} \right)\right]^{(-1)\cdot n}

d' = \left[\left(\frac{a}{b} \right)^{-1}\right]^{n}y c' = \left[(-1)^{-1}\cdot \left(\frac{a}{b} \right)^{-1}\right]^{n}

d' = \left(\frac{b}{a} \right)^{n} y c = (-1)^{n}\cdot \left(\frac{b}{a} \right)^{n}

d' = \left(\frac{b}{a} \right)^{n} y c' = \left[(-1)\cdot \left(\frac{b}{a} \right)\right]^{n}

d' = \left(\frac{b}{a} \right)^{n} y c' = \left[-\left(\frac{b}{a} \right)\right]^{n}

Si n es impar, entonces:

d' = \left(\frac{b}{a} \right)^{n} y c' = - \left(\frac{b}{a} \right)^{n}

Puesto que d' \neq c', la proposición es falsa.

(c) El exponente es un negativo par.

Si n es par, entonces:

d' = \left(\frac{b}{a} \right)^{n} y c' = \left(\frac{b}{a} \right)^{n}

Puesto que d' = c', la proposición es verdadera.

(d) El exponente es un positivo impar.

Considérese las siguientes expresiones:

d' = d^{n} y c' = c^{n}

d' = \left(\frac{a}{b}\right)^{n} y c' = \left[-\left(\frac{a}{b} \right)\right]^{n}

d' = \left(\frac{a}{b} \right)^{n} y c' = \left[(-1)\cdot \left(\frac{a}{b} \right)\right]^{n}

d' = \left(\frac{a}{b} \right)^{n} y c' = (-1)^{n}\cdot \left(\frac{a}{b} \right)^{n}

Si n es impar, entonces:

d' = \left(\frac{a}{b} \right)^{n} y c' = - \left(\frac{a}{b} \right)^{n}

(e) El exponente es un positivo par.

Considérese las siguientes expresiones:

d' = \left(\frac{a}{b} \right)^{n} y c' = \left(\frac{a}{b} \right)^{n}

Si n es par, entonces d' = c' y la proposición es verdadera.

Por tanto, se concluye que es falso que toda potencia que se obtiene de elevar a un mismo exponente un número racional y su opuesto es la misma.

3 0
3 years ago
Other questions:
  • stan and Lisa visit the county fair. if they wait in line for 15 minutes to ride each attraction, how many attractions can they
    5·2 answers
  • How do you solve 70 -7•7
    15·2 answers
  • 8^3*8^-5*8^y=1/8^2, what is the value of y in the product of powers below?
    15·2 answers
  • The graph of f(x)=4/x^2-2x-3 is shown. For which values of x is f(x) decreasing?
    13·2 answers
  • Find n=100 for #1<br> a. 1<br> b. 10<br> c. 5<br> d. 100
    15·1 answer
  • PLEASE ANSWER IMMEDIATELY!!!
    10·1 answer
  • What is the product of 2 numbers of 1 2 3 4 5 6 10 20 30​
    7·1 answer
  • HELP, I WILL GIVE BRAINIEST IF BEST EXPLANED
    15·1 answer
  • The janitor found that it was leaking at a rate of 3 fl oz per minute.How fast was the pipe leaking in gallons per hour?
    6·1 answer
  • The inflation rate in that country is so high that/A
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!