Answer:
Because it went through a chemical change which changes its atomic form
Answer:
1x10^-8 M
Explanation:
Since the solution turns blue, it mean the solution is a base.
Now, to know which option is correct, we need to determine the pH of each solution. This is illustrated below:
1. Concentration of Hydrogen ion, [H+] = 1x10^-2 M
pH =..?
pH = - log [H+]
pH = - log 1x10^-2
pH = 2
2. Concentration of Hydrogen ion, [H+] = 5x10-2 M
pH =..?
pH = - log [H+]
pH = - log 5x10^-2
pH = 1.3
3. Concentration of Hydrogen ion, [H+] = 5x10 M
pH =..?
pH = - log [H+]
pH = - log 5x10
pH = - 1.7
4. Concentration of Hydrogen ion, [H+] = 1x10-8 M
pH =..?
pH = - log [H+]
pH = - log 1x10^-8
pH = 8
A pH reading shows if the solution is acidic or basic. A pH reading between 0 and 6 indicates an acidic solution, a pH reading of 7 indicates a neutral solution while a pH reading between 8 and 14 indicates a basic solution.
From the above calculations, the pH reading indicates a basic solution when the hydrogen ion concentration was 1x10^-8 M.
Answer: oil spill, forest fire
Explanation:
The short term environmental change is a change that occur in an environment which exerts it's effect over the environment and the living beings for a short duration. The damage caused by the short term environmental change can be recovered in a short time. The oil spill and forests fire are the example of short term environmental changes.
The oil spill will reduce the abundance of the aquatic species until the oil is circulated out at the bay of the water body therefore, it is a short term environmental change.
Forests fire will remain ignited for a short period but can be destructive enough to cause damage to flora and fauna species. As time passes the reduced populations of flora and fauna can be recovered again.
Answer:
b) The dehydrated sample absorbed moisture after heating
Explanation:
a) Strong initial heating caused some of the hydrate sample to splatter out.
This will result in a higher percent of water than the real one, because you assume in the calculation that the splattered sample was only water (which in not true).
b) The dehydrated sample absorbed moisture after heating.
Usually inorganic salts may absorbed moisture from the atmosphere so this will explain the 13% difference between calculated water percent the real content of water in the hydrate.
c) The amount of the hydrate sample used was too small.
It will create some errors but they do not create a difference of 13% difference as stated in the problem.
d) The crucible was not heated to constant mass before use.
Here the error is small.
e) Excess heating caused the dehydrated sample to decompose.
Usually the inorganic compounds are stable in the temperature range of this kind of experiments. If you have an organic compound which retain water molecules you may decompose the sample forming volatile compounds which will leave crucible so the error will be quite high.