Answer:
Kp = \frac{P(NH_{3}) ^{4} P(O_{2}) ^{5}}{P(NO) ^{4} P(H_{2}O)^{6}}
Explanation:
First, we have to write the balanced chemical equation for the reaction. Nitrogen monoxide (NO) reacts with water (H₂O) to give ammonia (NH₃) and oxygen (O₂), according to the following:
NO(g) + H₂O(g) → NH₃(g) + O₂(g)
To balance the equation, we add the stoichiometric coefficients (4 for NH₃ and NO to balance N atoms, then 6 for H₂O to balance H atoms and then 5 for O₂ to balance O atoms):
4 NO(g) + 6 H₂O(g) → 4 NH₃(g) + 5 O₂(g)
All reactants and products are in the gaseous phase, so the equilibrium constant is expressed in terms of partial pressures (P) and is denoted as Kp. The Kp is expressed as the product of the reaction products (NH₃ and O₃) raised by their stoichiometric coefficients (4 and 5, respectively) divided into the product of the reaction reagents (NO and H₂O) raised by their stoichiometric coefficients (4 and 6, respectively). So, the pressure equilibrium constant expression is written as follows:

Answer:
the formula is 164.088 g/mol
Explanation:
Answer:
CaO + H20 => Ca(OH)2
Explanation:
quick lime ia a oxyde and when it reacts with water it gives hydroxide
Answer:
its caused by the convection of air masses with differences in densities mainly due to their differences in temperatures.
-Hops
Answer:
0.158 moles
Explanation:
We are given;
9.50 x 10^22 molecules of CO
We are required to determine the number of moles;
We need to know;
1 mole of a compound = 6.022 × 10^23 molecules
Therefore;
9.50 x 10^22 molecules of CO will be equivalent to;
= 9.50 x 10^22 molecules ÷ 6.022 × 10^23 molecules/mole
= 0.158 moles
Therefore, the number of moles are 0.158 moles