Answer:
The energy needed to split an atom into separate protons, neutrons, and electrons
Explanation:
The equation E = MC^2 is developed by Einstein’s Special Relativity Theory
where,
E = Energy
M = mass
C = speed of the light
The energy should be measured in Joules i.e J
The mass should be measured in Kilogram i.e Kg
And, the speed of the light should be measured in meters per second i.e ms-1
The C should be squared
Now the energy is required to divided into three particles i.e protons, electrons and neutrons
It also needs to allocate the nucleus into distinct protons and neutrons that we called binding energy of nuclear
And if the energy is required to take off an electron from an atom we called the energy of ionization
And if the energy is required to add an electron to an atom so we called it affinity of electron
<u>Answer:</u> The amount of energy released per gram of
is -71.92 kJ
<u>Explanation:</u>
For the given chemical reaction:

The equation used to calculate enthalpy change is of a reaction is:
![\Delta H^o_{rxn}=\sum [n\times \Delta H^o_f_{(product)}]-\sum [n\times \Delta H^o_f_{(reactant)}]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28product%29%7D%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28reactant%29%7D%5D)
The equation for the enthalpy change of the above reaction is:
![\Delta H^o_{rxn}=[(5\times \Delta H^o_f_{(B_2O_3(s))})+(9\times \Delta H^o_f_{(H_2O(l))})]-[(2\times \Delta H^o_f_{(B_5H_9(l))})+(12\times \Delta H^o_f_{(O_2(g))})]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%285%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28B_2O_3%28s%29%29%7D%29%2B%289%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28H_2O%28l%29%29%7D%29%5D-%5B%282%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28B_5H_9%28l%29%29%7D%29%2B%2812%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28O_2%28g%29%29%7D%29%5D)
Taking the standard enthalpy of formation:

Putting values in above equation, we get:
![\Delta H^o_{rxn}=[(5\times (1271.94))+(9\times (-285.83))]-[(2\times (73.2))+(12\times (0))]\\\\\Delta H^o_{rxn}=-9078.57kJ](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%285%5Ctimes%20%281271.94%29%29%2B%289%5Ctimes%20%28-285.83%29%29%5D-%5B%282%5Ctimes%20%2873.2%29%29%2B%2812%5Ctimes%20%280%29%29%5D%5C%5C%5C%5C%5CDelta%20H%5Eo_%7Brxn%7D%3D-9078.57kJ)
We know that:
Molar mass of pentaborane -9 = 63.12 g/mol
By Stoichiometry of the reaction:
If 2 moles of
produces -9078.57 kJ of energy.
Or,
If
of
produces -9078.57 kJ of energy
Then, 1 gram of
will produce =
of energy.
Hence, the amount of energy released per gram of
is -71.92 kJ
The sulphate solutions came from a recycling LIBs waste cathode materials, which were done by previous research; their content is shown in Table 1 [18]. Sodium carbonate (Na2CO3) was purchased from Nihon Shiyaku Reagent, Tokyo, Japan (NaCO3, 99.8%), for the chemical precipitation. CO2 was purchased from Air Product and Chemical, Taipei, Taiwan (CO2 ≥ 99%), to carry out the hydrogenation–decomposition method. Dowex G26 was obtained from Sigma-Aldrich (St. Louis, MO, USA) and was used as a strong acidic cation exchange resin, to remove impurities. Multi-elements ICP standard solutions were acquired from AccuStandard, New Haven, Connecticut State, USA. The nitric acid (HNO3) and sulfuric acid (H2SO4) were acquired from Sigma-Aldrich (St. Louis, MO, USA) (HNO3 ≥ 65%) (H2SO4 ≥ 98%) The materials were analyzed by energy-dispersive X-ray spectroscopy (EDS; XFlash6110, Bruker, Billerica, MA, USA), X-ray diffraction (XRD; DX-2700, Dangdong City, Liaoning, China), scanning electron microscopy (SEM; S-3000N, Hitachi, Tokyo, Japan), and inductively coupled plasma optical emission spectrometry (ICP-OES; Varian, Vista-MPX, PerkinElmer, Waltham, MA, USA). In order to
Appl. Sci. 2018, 8, 2252 3 of 10
control the hydrogenation temperature and heating rate, a thermostatic bath (XMtd-204;
I have the same question why can’t I accept this comment HELPPP 3737
Answer:
Charle's Law
Explanation:
<em>...cold it goes flat because the volume of air inside the ball has been reduced. </em>
<em />
In this scenario, the lower the temperature the lower the volume. This means that there's a direct proportional relationship between the volume and temperature.
This relationship is presented by Charles law. Charles law states that the volume occupied by a fixed mass of gas is directly proportional to its absolute temperature.