D there is one kind of cell of which all living things are made
Use the question marck Moles of CO2
The the giving = 0.624 mol O2
Find the CF faction = 1 mole= 32.00 of O2
O= 2x16.00= 32.00amu ( writte this in the cf fraction)
SET UP THE CHART
Always start with the giving
0.624 mol O2 / 1mol of CO2
___________ / _____________ = Cancel the queal ( O2)
/ 32.00c O2
/
/
Multiply the top and divide by the bottom
0.624 mol CO x 1mol CO2 = 0.624 divide by 32.00 O2 =0.0195
You should look at the giving number ( how many num u gor ever there)
Ur answer should have the same # as ur givin so
= 0.0195
= .0195 mol of CO2
Answer:
Na
Explanation:
because sodium has 1 electrons so it loses it to be stable and so have positive charge of 1
Answer:
2

Explanation:
Half-life


Concentration
![{[A]_0}_A=1.2\ \text{M}](https://tex.z-dn.net/?f=%7B%5BA%5D_0%7D_A%3D1.2%5C%20%5Ctext%7BM%7D)
![{[A]_0}_B=0.6\ \text{M}](https://tex.z-dn.net/?f=%7B%5BA%5D_0%7D_B%3D0.6%5C%20%5Ctext%7BM%7D)
We have the relation
![t_{1/2}\propto \dfrac{1}{[A]_0^{n-1}}](https://tex.z-dn.net/?f=t_%7B1%2F2%7D%5Cpropto%20%5Cdfrac%7B1%7D%7B%5BA%5D_0%5E%7Bn-1%7D%7D)
So
![\dfrac{{t_{1/2}}_A}{{t_{1/2}}_B}=\left(\dfrac{{[A]_0}_B}{{[A]_0}_A}\right)^{n-1}\\\Rightarrow \dfrac{2}{4}=\left(\dfrac{0.6}{1.2}\right)^{n-1}\\\Rightarrow \dfrac{1}{2}=\left(\dfrac{1}{2}\right)^{n-1}](https://tex.z-dn.net/?f=%5Cdfrac%7B%7Bt_%7B1%2F2%7D%7D_A%7D%7B%7Bt_%7B1%2F2%7D%7D_B%7D%3D%5Cleft%28%5Cdfrac%7B%7B%5BA%5D_0%7D_B%7D%7B%7B%5BA%5D_0%7D_A%7D%5Cright%29%5E%7Bn-1%7D%5C%5C%5CRightarrow%20%5Cdfrac%7B2%7D%7B4%7D%3D%5Cleft%28%5Cdfrac%7B0.6%7D%7B1.2%7D%5Cright%29%5E%7Bn-1%7D%5C%5C%5CRightarrow%20%5Cdfrac%7B1%7D%7B2%7D%3D%5Cleft%28%5Cdfrac%7B1%7D%7B2%7D%5Cright%29%5E%7Bn-1%7D)
Comparing the exponents we get

The order of the reaction is 2.
![t_{1/2}=\dfrac{1}{k[A]_0^{n-1}}\\\Rightarrow k=\dfrac{1}{t_{1/2}[A]_0^{n-1}}\\\Rightarrow k=\dfrac{1}{2\times 1.2^{2-1}}\\\Rightarrow k=0.4167\ \text{M}^{-1}\text{min}^{-1}](https://tex.z-dn.net/?f=t_%7B1%2F2%7D%3D%5Cdfrac%7B1%7D%7Bk%5BA%5D_0%5E%7Bn-1%7D%7D%5C%5C%5CRightarrow%20k%3D%5Cdfrac%7B1%7D%7Bt_%7B1%2F2%7D%5BA%5D_0%5E%7Bn-1%7D%7D%5C%5C%5CRightarrow%20k%3D%5Cdfrac%7B1%7D%7B2%5Ctimes%201.2%5E%7B2-1%7D%7D%5C%5C%5CRightarrow%20k%3D0.4167%5C%20%5Ctext%7BM%7D%5E%7B-1%7D%5Ctext%7Bmin%7D%5E%7B-1%7D)
The rate constant is 
An intrinsic property is independent of how much of a material is present and is independent of the form of the material, one large piece or a collection of small particles. Intrinsic properties are dependent mainly on the fundamental chemical composition and structure of the material.