Answer:
Answer is A
Explanation:
Now we know that an atom wants to complete its outer shell while keeping electrons in pairs of two now in A there are four electrons which which can be ejected while in B will want to accept 3 electrons to complete its shell as ejecting five will take lot of energy similar case will be for C,D and E which would want to accept 2,1,0 electrons respectively
Density = mass/volume
Therefore,
Density = 60g/30cm
Answer:
97 000 g Na
Explanation:
The absortion (or liberation) of energy in form of heat is expressed by:
q=m*Cp*ΔT
The information we have:
q=1.30MJ= 1.30*10^6 J
ΔT = 10.0°C = 10.0 K (ΔT is the same in °C than in K)
Cp=30.8 J/(K mol Na)
If you notice, the Cp in the question is in relation with mol of Na. Before using the q equation, we can find the Cp in relation to the grams of Na.
To do so, we use the molar mass of Na= 22.99g/mol

Now, we are able to solve for m:
=97 000 g Na
Since the barium ion will be isoelectronic to the nearest noble gas, which is xenon, the electronic configuration for Ba2+ is: [Xe]