<span>Simplifying
7p + 2 = 5p + 8
Reorder the terms:
2 + 7p = 5p + 8
Reorder the terms:
2 + 7p = 8 + 5p
Solving
2 + 7p = 8 + 5p
Solving for variable 'p'.
Move all terms containing p to the left, all other terms to the right.
Add '-5p' to each side of the equation.
2 + 7p + -5p = 8 + 5p + -5p</span>
The focus is left of the vertex, so the parabola opens to the left. The vertex is halfway between the focus and directrix, so the directrix is the vertical line
x = 2
Answer:
x = 0, y = 7
Step-by-step explanation:
Solving a system of equations using substitution requires one side to be equal to a variable present in the equation, in this case x or y. We should simplify the equation using elimination before substituting to reduce the chance of error.
In order to use the elimination method, you have to create variables that have the same coefficient—then you can eliminate them. These equations arew already aligned for us.
3x - 10y=-70
-<u> 4x +9y = 63</u>
-x + y = 7
Now, for substitution, the equation must be set to a variable.
-x + y = 7
y = x + 7
Next, plug the equation in where applicable in another equation.
4x +9(x + 7) = 63
4x + 9x + 63 = 63
13x = 0
x = 0
The final step of substitution is to plug the known variable into an equation to find the other variable.
3(0) - 10y=-70
0 - 10y = -70
10y = 70
y = 7
I guarantee you this answer is correct, I worked it out using other methods and graphing prior to submitting this answer.
In this item, we are to calculated for the 6th term of the geometric sequence given the initial value and the common ratio. This can be calculated through the equation,
An = (A₀)(r)ⁿ ⁻ ¹
where An is the nth term, A₀ is the first term (in this item is referred to as t₀), r is the common ratio, and n is the number of terms.
Substitute the known values to the equation,
An = (5)(-1/2)⁶ ⁻ ¹
An = -5/32
Hence, the answer to this item is the third choice, -5/32.