Answer:
The first option is the correct one, the area of the shaded portion of the circle is
[/tex](5 \pi -11.6)ft^2[/tex]
Step-by-step explanation:
Let us first consider the triangle + the shadow.
The full area of the circle is the radius squared times pi, so
A=![(5 ft)^2 \cdot \pi \\25 ft^2 \cdot \pi](https://tex.z-dn.net/?f=%285%20ft%29%5E2%20%5Ccdot%20%5Cpi%20%5C%5C25%20ft%5E2%20%5Ccdot%20%5Cpi)
Since
, the area of the triangle + the shaded area is one fifth of the area of the whole circle, thus
![A_1=\frac{1}{5}25 ft^2 \cdot \pi\\ =5 ft^2 \cdot \pi](https://tex.z-dn.net/?f=A_1%3D%5Cfrac%7B1%7D%7B5%7D25%20ft%5E2%20%5Ccdot%20%5Cpi%5C%5C%20%3D5%20ft%5E2%20%5Ccdot%20%5Cpi)
If we want to know the area of the shaded part of the circle, we must subtract the area of the triangle from
.
The area of the triangle is given by
![A_{triangle}=\frac{1}{2}\cdot (2.9+2.9)ft \cdot 4 ft\\= 11.6 ft^2](https://tex.z-dn.net/?f=A_%7Btriangle%7D%3D%5Cfrac%7B1%7D%7B2%7D%5Ccdot%20%282.9%2B2.9%29ft%20%5Ccdot%204%20ft%5C%5C%3D%2011.6%20ft%5E2)
Thus the area of the shaded portion of the circle is
![A_1-A_{triangle}=5 \pi ft^2-11.6ft^2\\= (5 \pi -11.6)ft^2](https://tex.z-dn.net/?f=A_1-A_%7Btriangle%7D%3D5%20%5Cpi%20ft%5E2-11.6ft%5E2%5C%5C%3D%20%285%20%5Cpi%20-11.6%29ft%5E2)