Answer:
Here's what I get
Explanation:
Ethylamine has an N atom with a lone pair of electrons.
It can act as a Brønsted-Lowry base and accept a proton from water and become an ethylammonium ion.
The structure of the ion is shown below (there is a C atom at each of the four-way bond intersections).
Answer:
1) thiamine pyrophosphate -activation of aldehydes
2) coenzyme A -acyl group transfer
3) biotin -CO2 activation/transfer
4) NAD -oxidation/reduction
Explanation:
1. Thiamine pyrophosphate: This is a derivative of Vitamin B1 also known as thiamine. It contains a pyrimidine group linked to the thiazole ring. This connection is further linked to the pyrophosphate group. It functions as a coenzyme in all reactions involving alpha-keto acids. This produces activated aldehydes that could be subject to oxidation.
2. Coenzyme A: This cofactor is a thiol that reacts with carboxylic acids to form thioesters. In so doing, it carries the acyl group. In this condition, it can also be referred to as acyl CoA.
3. Biotin: Also known as Vitamin B7, biotin consists of an ureido ring merged with tetrahydrothiophene. The ureido ring contains the CO2 that can be transferred or activated. Five carboxylase enzymes use biotin as a cofactor in processes such as fat synthesis, glucose generation and the breakdown of sugar.
4. NAD: Nicotinamide adenine dinucleotide consists of two dinucleotides connected to each other at their phosphate groups. NAD exists in two states which are the NAD+ and NADH states. These two states serve as oxidizing and reducing agents respectively. The oxidizing agent becomes reduced to NADH after accepting electrons from other compounds. NADH donates an electron and becomes oxidized to NAD+.
Parents SHOULDN'T avoid sharing their own mistakes with children.
I’m not gonna tell you but imma gonna give you something that helps you use khan academy
The answer has to depend on the mass of the copper that you're trying to melt.
But there is a formula which you can calculate the energy required if you have the information of the mass. This formula requires the value called specific latent heat of fusion, which is the energy required to melt or freeze a specific mass of copper without changing its temperature but change its state.

E is the total energy required, m is the mass, and lv is the specific latent heat of fusion of copper.
Usually, in questions, lv is given. But we can also look it up online which is around 205kJ kg^-1
this means, to melt or freeze a copper, we need to work the mass multiplied by 205kJ in order to calculate its total energy needed or released.