Answer:
5
Explanation:
Firstly, we convert what we have to percentage compositions.
There are two parts in the molecule, the sulphate part and the water part.
The percentage compositions is as follows:
Sulphate- (103.74)/(103.74 + 58.55) × 100% = apprx 64%
The water part = 100 - 64 = 36%
Now, we divide the percentages by the molar masses.
For the CuSO4 molar mass is 64 + 32 + 4(16) = 160g/mol
For the H2O = 2(1) + 16 = 18g/mol
Now we divide the percentages by these masses
Sulphate = 64/160 = 0.4
Water = 36/18 = 2
The ratio is thus 0.4:2 = 1:5
Hence, there are 5 water molecules.
Answer:
You need 8,324 g of CaCl₂ yo make this solution
Explanation:
Molarity is a way to express concentration in a solution, in units of moles of solute per liter of solution.
To know the grams of CaCl₂ it is necessary to know, first, the moles of this substance with the desired volume and concentration , thus:
0,1500 L ×
= 0,075 CaCl₂ moles
Now, with the molar mass of CaCl₂ you will obtain the necessary grams, thus:
0,075 CaCl₂ moles ×
= 8,324 g of CaCl₂
So, you need <em>8,324 g of CaCl₂</em> to make 150,0 mL of a 0,500M solution
I hope it helps!
Answer:
Yes. Example: <u>Sulfur hexafluoride (SF₆) molecule</u>
Explanation:
According to the octet rule, elements tend to form chemical bonds in order to have <u>8 electrons in their valence shell</u> and gain the stable s²p⁶ electronic configuration.
However, this rule is generally followed by main group elements only.
Exception: <u>SF₆ molecule</u>
In this molecule, six fluorine atoms are attached to the central sulfur atom by single covalent bonds.
<u>Each fluorine atom has 8 electrons in their valence shells</u>. Thus, it <u>follows the octet rule.</u>
Whereas, there are <u>12 electrons around the central sulfur atom</u> in the SF₆ molecule. Therefore, <u>sulfur does not follow the octet rule.</u>
<u>Therefore, the SF₆ molecule is known as a </u><u>hypervalent molecule</u><u> or expanded-valence molecule.</u>
The change in energy of the system : -63 J
<h3>Further explanation</h3>
Given
279 J work
216 J heat
Required
The change in energy
Solution
Laws of thermodynamics 1
ΔU=Q+W
Rules :
- receives heat, Q +
- releases heat, Q -
- work is done by a system, W -
- work is done on a system, W +
a gas work on the surrounding : W =-279 J
a gas absorb heat from surrounding : Q = +216 J
Internal energy :
= -279+216
= -63 J