Answer:
3.0×10⁻¹³ M
Explanation:
The solubility product Ksp is the product of the concentrations of the ions involved. This relation can be used to find the solubility of interest.
<h3>Equation</h3>
The power of each concentration in the equation for Ksp is the coefficient of the species in the balanced equation.
Ksp = [Al₃⁺³]×[OH⁻]³
<h3>Solving for [Al₃⁺³]</h3>
The initial concentration [OH⁻] is that in water, 10⁻⁷ M. The reaction equation tells us there are 3 OH ions for each Al₃ ion. If x is the concentration [Al₃⁺³], then the reaction increases the concentration [OH⁻] by 3x.
This means the solubility product equation is ...
Ksp = x(10⁻⁷ +3x)³
For the given Ksp = 3×10⁻³⁴, we can estimate the value of x will be less than 10⁻⁸. This means the sum will be dominated by the 10⁻⁷ term, and we can figure x from ...
3.0×10⁻³⁴ = x(10⁻⁷)³
Then x = [Al₃⁺³] will be ...
![[\text{Al}_3^{\,+3}]=\dfrac{3.0\times10^{-34}}{10^{-21}}\approx \boxed{3.0\times10^{-13}\qquad\text{moles per liter}}](https://tex.z-dn.net/?f=%5B%5Ctext%7BAl%7D_3%5E%7B%5C%2C%2B3%7D%5D%3D%5Cdfrac%7B3.0%5Ctimes10%5E%7B-34%7D%7D%7B10%5E%7B-21%7D%7D%5Capprox%20%5Cboxed%7B3.0%5Ctimes10%5E%7B-13%7D%5Cqquad%5Ctext%7Bmoles%20per%20liter%7D%7D)
We note this value is significantly less than 10⁻⁷, so our assumption that it could be neglected in the original Ksp equation is substantiated.
__
<em>Additional comment</em>
The attachment shows the solution of the 4th-degree Ksp equation in x. The only positive real root (on the bottom line) rounds to 3.0×10^-13.
120 grams of NaOH means 3 Moles of NaOH because 40 grams (Molecular Weight in grams) is one mole of NaOH.
Each mole of any substance contain Avogadro’s number of molecules ie., 6.022 x (10 to the power 23).
Hence 3 Moles of NaOH contain 3 times of Avogadro’s number of molecules ie., 3 x 6.022 x (10 to the power 23)
Answer:
magnesium
Explanation:
magnesium has fewer valence shells meaning that the protons have a stronger hold on the electrons and it would take more energy to remove an electron to create an ion.
Since this element has 50 electrons you know that it has 50 protons. The number of proton= the atomic number. Atomic number 50 is tin. The atomic symbol for tin is Sn and the weight is 120. So this is the tin 120 isotope
Answer:warm
Explanation: because it is in the southern hemisphere so in the winter while the northern hemisphere is in a cold winter the southern hemisphere is in a warm winter due to it being in the southern hemisphere where temperatures are really warm in the southern hemisphere.