This rock is balanced by roots on the ground that are very strong
<span>the reaction is endothermic
</span><span>the δh is positive</span>
The initial temperature of the water that resulted in the final temperature of the water-metal mixture is 20.7 ⁰C.
<em>"Your question is not complete, it seems to be missing the following information;"</em>
the specific heat capacity of the metal is 0.45 J/g⁰C.
The given parameters;
- <em>mass of water, </em>
<em> = 45 g</em> - <em>final temperature of the water, </em>
<em> = 22 ⁰C</em> - <em>mass of the metal, m = 8.5 g</em>
- <em>initial temperature of the metal, t = 82 ⁰C.</em>
- <em>specific heat capacity of the metal, c = 0.45 J/g⁰C.</em>
The initial temperature of the water will be calculated by applying the principle of conservation of energy;
<em>heat gained by water = heat lost by metal</em>


where;
<em>is the specific heat capacity of the water = 4.184 J/g⁰C.</em>
<em />
<em>Substitute the given values;</em>
45 x 4.184 x (22 - t) = 8.5 x 0.45 x (85 - 22)
4142.16 - 188.28t = 240.98
188.28t = 4142.16 - 240.98
188.28t = 3901.18

Thus, the initial temperature of the water that resulted in the final temperature of the water-metal mixture is 20.7 ⁰C.
Learn more here:brainly.com/question/15345295
The best word to fill the blank is "saturated". Hydrocarbons with only single bonds are saturated. These hydrocarbons are the deemed to be the simplest class. They are called saturated because each carbon is bonded to as many hydrogen as possible.