Answer:
a < -30/31
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality<u>
</u>
<u>Algebra I</u>
Step-by-step explanation:
<u>Step 1: Define</u>
7a + 42 + 8 < -10 + 9a - 64a
<u>Step 2: Solve for </u><em><u>a</u></em>
- Combine like terms (a): 7a + 42 + 8 < -10 - 55a
- Combine like terms: 7a + 50 < -10 - 55a
- [Addition Property of Equality] Add 55a on both sides: 62a + 50 < -10
- [Subtraction Property of Equality] Subtract 50 on both sides: 62a < -60
- [Division Property of Equality] Divide 62 on both sides: a < -30/31
Here we see any number <em>a</em> less than -30/31 would work as a solution to the inequality.
Answer:
9/39
Step-by-step explanation: just took the quiz on ed 2020
$98.30=5.1a+11.6
98.30-11.6=5a+11.6-11.6
86.7=5a
86.7/5=5a/5
17.34=a
So only 17 people can attend
What is your tabletop asking us today?