Answer:
<em>d. unchanged.</em>
Explanation:
The frequency of a wave is dependent on the speed of the wave and the wavelength of the wave. The frequency is characteristic for a wave, and does not change with distance. This is unlike the amplitude which determines the intensity, which decreases with distance.
In a wave, the velocity of propagation of a wave is the product of its wavelength and its frequency. The speed of sound does not change with distance, except when entering from one medium to another, and we can see from
v = fλ
that the frequency is tied to the wave, and does not change throughout the waveform.
where v is the speed of the sound wave
f is the frequency
λ is the wavelength of the sound wave.
Answer:bippity boppity yee
Explanation:
Answer:
Elastically
Explanation:
A rock that has deformed Elastically under stress keeps its new shape when the stress is released.
In elastic deformation the original shape of the object is regained when the stress is removed. Whereas in plastic deformation the original shape is parmanently deformed with the application of stress.
Answer:
Explanation:
- given S = distance from the first = 3.20cm = 0.032m, t = 1.30×10−8 s
- acceleration = 0.032 X 2 /(1.30×10−8)^2
a = 3.79 x 10^14m/s^2
E = ma /q = 9.11 x 10^-31 x 3.79 x 10^14 / 1.6 x 10^-19
E = magnitude of this electric field. = 2156.3N/C
b) Find the speed of the electron when it strikes the second plate ; V^2 = 2as
= 2 X 3.79 x 10^14 X 0.032
= 4.92 X 10^6m/s