Answer:
a) current in the second wire is 5.60A
b) opposite directions
Explanation:
a) We need to find the current of wire, the magnitude of the force per unit length between the two wires carrying current I and I¹ is given by


b) knowing that for a two parallel conductor carrying current in the same direction attracts each other, and for a two parallel conductors carrying carying current in opposite direction repels eachother.
therefore, since the two wire repel each other then the current in the second wire must flow in the opposite direction of the current in the first wire.
Answer:
12.245m3
Explanation:
The electric energy is created by The potential energy substended by the specific volume of water in dam.
Electric energy is calculated as
E= Q× V
E is Energy, Q is charge and V is Voltage
Note that this energy has been given and is 60Joules
From conservation of energy it means;
M× g×h = 60
Where M is the mass of water.
g is acceleration of free fall due to gravity which is 9.8m/S2
h is the height of water flow.
From change of subject of formula for M; we have:
M = 60/ g × h
= 60/ 9.8 × 0.5
= 12.245kg
Now how much water required means the volume of water;
Note density = mass/volume
Therefore volume = mass/density
=12.245/1= 12.245m3
Note the density of water is 1kg/m3
Explanation:
(a)
The initial vertical velocity is 13 m/s. At the maximum height, the vertical velocity is 0 m/s.
v = at + v₀
0 = (-9.8) t + 13
t ≈ 1.33 s
(b)
Immediately prior to the explosion, the ball is at the maximum height. Here, the vertical velocity is 0 m/s, and the horizontal velocity is constant at 25 m/s.
v = √(vx² + vy²)
v = √(25² + 0²)
v = 25 m/s
(c)
Momentum is conserved before and after the explosion.
In the x direction:
m vx = ma vax + mb vbx
m (25) = (⅓ m) (0) + (⅔ m) (vbx)
25m = (⅔ m) (vbx)
25 = ⅔ vbx
vbx = 37.5 m/s
And in the y direction:
m vy = ma vay + mb vby
m (0) = (⅓ m) (0) + (⅔ m) (vby)
0 = (⅔ m) (vby)
vby = 0 m/s
Since the vertical velocity hasn't changed, and since Fragment B lands at the same height it was launched from, it will have a vertical velocity equal in magnitude and opposite in direction as its initial velocity.
vy = -13 m/s
And the horizontal velocity will stay constant.
vx = 37.5 m/s
The velocity vector is (37.5 i - 13 j) m/s. The magnitude is:
v = √(vx² + vy²)
v = √(37.5² + (-13)²)
v ≈ 39.7 m/s
Answer:
The first is that the object moves