Answer:
1g/cm3
Explanation:
volume of block is 3 cubed which is 27 cm3
we know density is m/v so d= 27g/27cm3
which is 1g/cm3
if my answer helps please mark as brainliest
Answer:
S = 11.025 m
Explanation:
Given,
The time taken by the pebble to hit the water surface is, t = 1.5 s
Acceleration due to gravity, g = 9.8 m/s²
Using the II equations of motion
S = ut + 1/2 gt²
Here u is the initial velocity of the pebble. Since it is free-fall, the initial velocity
u = 0
Therefore, the equation becomes
S = 1/2 gt²
Substituting the given values in the above equation
S = 0.5 x 9.8 x 1.5²
= 11.025 m
Hence, the distance from the edge of the well to the water's surface is, S = 11.025 m
Answer:
x = 1474.9 [m]
Explanation:
To solve this problem we must use Newton's second law, which tells us that the sum of forces must be equal to the product of mass by acceleration.
We must understand that when forces are applied on the body, they tend to slow the body down to stop it.
So as the body continues to move to the left, it is slowing down. Therefore we must calculate this deceleration value using Newton's second law. We must perform a sum of forces on the x-axis equal to the product of mass by acceleration. With leftward movement as negative and rightward forces as positive.
ΣF = m*a
![10 +12*sin(60)= - 6*a\\a = - 3.39[m/s^{2}]](https://tex.z-dn.net/?f=10%20%2B12%2Asin%2860%29%3D%20-%206%2Aa%5C%5Ca%20%3D%20-%203.39%5Bm%2Fs%5E%7B2%7D%5D)
Now using the following equation of kinematics, we can calculate the distance of the block, before stopping completely. The initial speed must be 100 [m/s].

where:
Vf = final velocity = 0 (the block stops)
Vo = initial velocity = 100 [m/s]
a = - 3.39 [m/s²]
x = displacement [m]
![0 = 100^{2}-2*3.39*x\\x=\frac{10000}{2*3.39}\\x=1474.9[m]](https://tex.z-dn.net/?f=0%20%3D%20100%5E%7B2%7D-2%2A3.39%2Ax%5C%5Cx%3D%5Cfrac%7B10000%7D%7B2%2A3.39%7D%5C%5Cx%3D1474.9%5Bm%5D)
Answer:
option D is correct
Explanation:
cl has 17 electrons if it has 18 it becomes cl-
Answer:
Wrong its B Use a different amount of mass in the cart for five different trials, roll the cart down a ramp with the same slope for each trial, and measure how long it takes the cart to roll one meter each time.
Explanation: