Answer:
Wavelength, 
Explanation:
It is given that,
Velocity of an electron, 
Mass of an electron, 
We need to find the wavelength of an electron. It can be calculated using the De- Broglie wavelength as :



So, the wavelength of an electron is
. Hence, this is the required solution.
False, Carbon usually forms four covalent bonds.
Option C
The fact that voltage can be created by exerting force on a crystal is used in Knock sensor
<u>Explanation:</u>
Any knock to an engine exhibits as a little shake that is distinguished by the knock sensor. This sensor acts by altering the fluctuation to an electrical sign, which is later transferred to the processor mastering the ignition system.
There the variation in quake to the voltage sign modifies the timing improvements on the kindling. The knock sensor is placed on the engine base, cylinder cap or consumption manifold. This is because its purpose is to sense fluctuations affected by engine knock or explosion.
Answer:
The displacement of the boat is 7.41 m
Explanation:
Given;
initial velocity of the motorboat, u = 6.5 m/s west
final velocity of the motorboat, v = 1.5 m/s west
acceleration of the motorboat, a = -2.7 m/s² east
The displacement of the boat is given by;
v² = u² + 2ad
where;
d is the displacement of the motorboat
1.5² = 6.5² + 2(-2.7)d
1.5² - 6.5² = -5.4d
-40 = -5.4d
d = (40) / 5.4
d = 7.41 m
Therefore, the displacement of the boat is 7.41 m
Explanation:
(a) Net force acting on the block is as follows.

or, ma = -mg Sin (\theta)[/tex]
a = 
= 
= -3.35 
According to the kinematic equation of motion,

Distance traveled by the block before stopping is as follows.
s = 
= 
= 21.5 m
According to the kinematic equation of motion,
v =
0 = 
= 7.16 sec
Therefore, before coming to rest the surface of the plane will slide the box till 7.16 sec.
(b) When the block is moving down the inline then net force acting on the block is as follows.

ma = 
a = 
= 
= 3.35 
Kinematics equation of the motion is as follows.
s = 
21.5 m = 
= 
= 3.58 sec
Hence, total time taken by the block to return to its starting position is as follows.
t = 
= 7.16 sec + 3.58 sec
= 10.7 sec
Thus, we can conclude that 10.7 sec time it take to return to its starting position.