Answer:
age of the site is 15411.75 years old
Explanation:
Given data
plant or animal dies = 14C
time period = 5730 year
carbon = 15.5%
to find out
age (in years) of the ancient site
solution
we know that Final value = Initial value × 
here n is half life passed
so for 15.5%
15.5% = 100% of 
0.155 = 1 × 
now take log both side
log 0.155 = log 
n = log 0.155 / log 0.5
n = 2.68966
we know here 5730 years in half life
so for 2.68966 half-lives = 2.68966 × 5730 = 15411.7518
age of the site is 15411.75 years old
Answer:
Explanation:
- The radio waves have a fixed relationship between the propagation speed (the speed of light in vacuum), the frequency and the wavelength, as follows:
- v = c = λ*f
where c= speed of light in vacuum = 3*10⁸ m/s, λ = wavelength =
4.92*10⁷ m.
Solving for f, we get the frequency of the radio waves:
f = 6.1 Hz
- Now, from the Hooke's law, we know that the mass attached at the end of the spring oscillates with an angular frequency defined by a fixed relationship between the spring constant k and the mass m, as follows:

- Now, we know that there exists a fixed relationship between the angular frequency and the frequency, as follows:
- We also know that f in (2) is the same that we got for the radio waves, so replacing (2) in (1), and rearranging terms, we can solve for k, as follows:

Answer:
Solution given:
height [H]=25m
initial velocity [u]=8.25m/s
g=9.8m/s
now;
a. How long is the ball in flight before striking the ground?
Time of flight =?
Now
Time of flight=
substituting value
- =

- =2.26seconds
<h3>
<u>the ball is in flight before striking the ground for 2.26seconds</u>.</h3>
b. How far from the building does the ball strike the ground?
<u>H</u><u>o</u><u>r</u><u>i</u><u>z</u><u>o</u><u>n</u><u>t</u><u>a</u><u>l</u><u> </u>range=?
we have
Horizontal range=u*
<h3>
<u>The ball strikes 18.63m far from building</u>. </h3>
Answer:
A super conductor is a perfect conductor that has zero resistance. It doesn't just have very low resistance and conducts electricity well, it has ZERO resistance and conducts electricity perfectly with no losses at all