Explanation:
We Know That
POTENTIAL ENERGY= MASS*g*HEIGHT
When the objects are lifted to same height then the object with heavier mass would have the highest potential energy
.
Answer:
p = 1.16 10⁻¹⁴ C m and ΔU = 2.7 10 -11 J
Explanation:
The dipole moment of a dipole is the product of charges by distance
p = 2 a q
With 2a the distance between the charges and the magnitude of the charges
p = 1.7 10⁻⁹ 6.8 10⁻⁶
p = 1.16 10⁻¹⁴ C m
The potential energie dipole is described by the expression
U = - p E cos θ
Where θ is the angle between the dipole and the electric field, the zero value of the potential energy is located for when the dipole is perpendicular to the electric field line
Orientation parallel to the field
θ = 0º
U = 1.16 10⁻¹⁴ 1160 cos 0
U1 = 1.35 10⁻¹¹ J
Antiparallel orientation
θ = 180º
cos 180 = -1
U2 = -1.35 10⁻¹¹ J
The difference in energy between these two configurations is the subtraction of the energies
ΔU = | U1 -U2 |
ΔU = 1.35 10-11 - (-1.35 10-11)
ΔU = 2.7 10 -11 J
Answer:
The voltage will quadruple
Explanation:
The power dissipated in a circuit is given by

where
V is the voltage
R is the resistance
In this problem, the voltage across the circuit is doubled:
V' = 2V
So the new power dissipated is

so, the power dissipated will quadruple.
Answer:
-22/15
Explanation:
the least common denominator is 15 so first you multiply -2/3 by 5 in both the numerator and denominator making it -10/15
Then you do the same to -4/5 except you multiply the numerator and denominator by 3 giving you -12/15
If you add -10/15+ -12/15 you get -22/15