1. m
2. One set of ordered pairs
3. b
To show why this is, I’m going to explain how to write the equation for a linear function with two random sets of ordered pairs - (1,0) and (5, 8).
First, find the slope. The formula for slope is m = (y2 - y1)/(x2-x1) where m is the slope and (x1, y1) and (x2, y2) are two sets of points.
This is why #1 is m. M is the letter used when finding slope.
To find m, I plug in the two sets of ordered pairs.
m = (8-0)/(5-1)
m = 8/4
m = 2
An equation for a line (linear function) is written in something called slope-intercept form. It looks like y = mx + b. m is the slope and b is the y-intercept (number y equals when x = 0). If m = 3 and b = 1, the equation would be y = 3x + 1.
Here, you have just solved for m and know it equals 2. Plug that value in for m.
y = 2x + b
To solve for b, plug one ordered pair in for x and y. I will use (1,0)
0 = 2(1) + b
0 = 2 + b
-2 = b
Now that you know b = -2, plug that in for b.
y = 2x - 2. Now you have the equation fo the line.
Answer:
Maybe the answer must be 90°
Answer:
y = -1/4x +3
Step-by-step explanation:
Hope this helps!
Answer:
d(x) = 3.5x + 0.5
Step-by-step explanation:
3.5 x 5 = 17.5 which means the canoe began from a starting point of 0.5
<h2>
The required solution is x = 6 and y = 11 </h2>
Step-by-step explanation:
Given system of equations are
x+5y = 11 and x-y =5
![X=\left[\begin{array}{c}x\\y\end{array}\right]](https://tex.z-dn.net/?f=X%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%5C%5Cy%5Cend%7Barray%7D%5Cright%5D)
and ![B= \left[\begin{array}{c}11\\5\end{array}\right]](https://tex.z-dn.net/?f=B%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D11%5C%5C5%5Cend%7Barray%7D%5Cright%5D)
∴AX=B
![adj A = \left[\begin{array}{cc}{-1}&{-5}\\{-1}&1\end{array}\right]](https://tex.z-dn.net/?f=adj%20A%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%7B-1%7D%26%7B-5%7D%5C%5C%7B-1%7D%261%5Cend%7Barray%7D%5Cright%5D)

∴
So,![A^{-1} =\frac{ \left[\begin{array}{cc}{-1}&{-5}\\{-1}&1\end{array}\right]}{-6}](https://tex.z-dn.net/?f=A%5E%7B-1%7D%20%3D%5Cfrac%7B%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%7B-1%7D%26%7B-5%7D%5C%5C%7B-1%7D%261%5Cend%7Barray%7D%5Cright%5D%7D%7B-6%7D)
![A^{-1} ={ \left[\begin{array}{c \c} {{\frac{1}{6} }}&{\frac{5}{6}}\ \\ {{\frac{1}{6} }}&{\frac{-1}{6}} \end{array}\right]}](https://tex.z-dn.net/?f=A%5E%7B-1%7D%20%3D%7B%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%20%5Cc%7D%20%20%7B%7B%5Cfrac%7B1%7D%7B6%7D%20%7D%7D%26%7B%5Cfrac%7B5%7D%7B6%7D%7D%5C%20%5C%5C%20%20%7B%7B%5Cfrac%7B1%7D%7B6%7D%20%7D%7D%26%7B%5Cfrac%7B-1%7D%7B6%7D%7D%20%5Cend%7Barray%7D%5Cright%5D%7D)

⇒![\left[\begin{array}{c}x\\y\end{array}\right] ={ \left[\begin{array}{c \c} {{\frac{1}{6} }}&{\frac{5}{6}}\ \\ {{\frac{1}{6} }}&{\frac{-1}{6}} \end{array}\right]} \times \left[\begin{array}{c}11\\5\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%5C%5Cy%5Cend%7Barray%7D%5Cright%5D%20%3D%7B%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%20%5Cc%7D%20%20%7B%7B%5Cfrac%7B1%7D%7B6%7D%20%7D%7D%26%7B%5Cfrac%7B5%7D%7B6%7D%7D%5C%20%5C%5C%20%20%7B%7B%5Cfrac%7B1%7D%7B6%7D%20%7D%7D%26%7B%5Cfrac%7B-1%7D%7B6%7D%7D%20%5Cend%7Barray%7D%5Cright%5D%7D%20%5Ctimes%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D11%5C%5C5%5Cend%7Barray%7D%5Cright%5D)
⇒![\left[\begin{array}{c}x\\y\end{array}\right] ={ \left[\begin{array}{c} {6}\\ {11} \end{array}\right]}](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%5C%5Cy%5Cend%7Barray%7D%5Cright%5D%20%3D%7B%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D%20%20%7B6%7D%5C%5C%20%20%7B11%7D%20%5Cend%7Barray%7D%5Cright%5D%7D)
∴ x= 6 and y = 11
The required solution is x = 6 and y = 11