<h3>Given</h3>
tan(x)²·sin(x) = tan(x)²
<h3>Find</h3>
x on the interval [0, 2π)
<h3>Solution</h3>
Subtract the right side and factor. Then make use of the zero-product rule.
... tan(x)²·sin(x) -tan(x)² = 0
... tan(x)²·(sin(x) -1) = 0
This is an indeterminate form at x = π/2 and undefined at x = 3π/2. We can resolve the indeterminate form by using an identity for tan(x)²:
... tan(x)² = sin(x)²/cos(x)² = sin(x)²/(1 -sin(x)²)
Then our equation becomes
... sin(x)²·(sin(x) -1)/((1 -sin(x))(1 +sin(x))) = 0
... -sin(x)²/(1 +sin(x)) = 0
Now, we know the only solutions are found where sin(x) = 0, at ...
... x ∈ {0, π}
Answer:
the future value is $5800.38
Step-by-step explanation:
Given that
The invested amount i.e present value is $500
The rate is 5 % per year so quarterly rate is 5% ÷ 4 = 1.25%
The time period is 3 per year so for quartely it is 3 × 4 = 12
We need to find out the future value
So as we know that
Future value = Present value × (1 + rate of interest)^time
= $500 × (1 + 0.0125)^12
= $580.38
hence, the future value is $5800.38
<h3>Refer to the diagram below</h3>
- Draw one smaller circle inside another larger circle. Make sure the circle's edges do not touch in any way. Based on this diagram, you can see that any tangent of the smaller circle cannot possibly intersect the larger circle at exactly one location (hence that inner circle tangent cannot be a tangent to the larger circle). So that's why there are no common tangents in this situation.
- Start with the drawing made in problem 1. Move the smaller circle so that it's now touching the larger circle at exactly one point. Make sure the smaller circle is completely inside the larger one. They both share a common point of tangency and therefore share a common single tangent line.
- Start with the drawing made for problem 2. Move the smaller circle so that it's partially outside the larger circle. This will allow for two different common tangents to form.
- Start with the drawing made for problem 3. Move the smaller circle so that it's completely outside the larger circle, but have the circles touch at exactly one point. This will allow for an internal common tangent plus two extra external common tangents.
- Pull the two circles completely apart. Make sure they don't touch at all. This will allow us to have four different common tangents. Two of those tangents are internal, while the others are external. An internal tangent cuts through the line that directly connects the centers of the circles.
Refer to the diagram below for examples of what I mean.
It’s c because when the number of simply it gets u that
Answer:
the answer is 1/2 which loos like "D"
Step-by-step explanation:
the top ends up being x ^-8 and the denominator is x^-7
which is x^&/x^8 = 1/x = 1/2