The solution for the question above is:
C = 0.270
<span>V = 0.0275L </span>
<span>n = ? </span>
<span>Use the molar formula which is: C = n/V </span>
<span>Re-arrange it to: n = CV </span>
<span>n = (0.270)*(0.0275) </span>
<span>n = 0.007425 mols </span>
<span>(more precise) n = 7.425 x 10^-3 mols
</span>
7.425 x 10^-3 mols is the answer.
the water wants to give the electricity to you because it doesn't want any more electrons it throws them away and gives them to your body
Answer:
V = 22.34 L
Explanation:
Given data:
Volume of O₂ needed = ?
Temperature and pressure = standard
Number of molecules of water produced = 6.0× 10²³
Solution:
Chemical equation:
2H₂ + O₂ → 2H₂O
Number of moles of water:
1 mole contain 6.022× 10²³ molecules
6.0× 10²³ molecules × 1 mole / 6.022× 10²³ molecules
0.99 mole
Now we will compare the moles of oxygen and water.
H₂O : O₂
2 : 1
0.996 : 0.996
Volume of oxygen needed:
PV = nRT
V = nRT/P
V = 0.996 mol × 0.0821 atm.L/mol.K × 273.15 K / 1 atm
V = 22.34 L
Answer:
138 mg
Explanation:
A company is testing drinking water and wants to ensure that Ca content is below 155 ppm (= 155 mg/kg), that is, <em>155 milligrams of calcium per kilogram of drinking water</em>. We need to find the maximum amount of calcium in 890 g of drinking water.
Step 1: Convert the mass of drinking water to kilograms.
We will use the relation 1 kg = 1000 g.

Step 2: Calculate the maximum amount of calcium in 0.890 kg of drinking water

Answer:
They expressed it as rate of change in concentration of reactants or products in a chemical reaction