Answer:
Explanation:
The given pH = 8.55
Unknown:
[H₃O⁺] = ?
[OH⁻] = ?
In order to find these unknowns we must first establish some relationship.
pH = -log[H₃O⁺]
8.55 = -log[H₃O⁺]
[H₃O⁺] = inverse log₁₀(-8.55) = 2.82 x 10⁻⁹moldm⁻³
To find the [OH⁻],
pH + pOH = 14
pOH = 14 - pH = 14 - 8.55
pOH = 5.45
pOH = -log[OH⁻]
[OH⁻] = inverse log₁₀ (-5.45) = 3.55 x 10⁻⁶moldm⁻³
The solution is basic because it has more concentration of OH⁻ ions compared to H⁺ ions.
Answer:
Methods for determining or delivering precise volumes include volumetric pipets and pycnometers; less precise methods include burets, graduated cylinders, and graduated pipets. In this experiment, you will measure masses and volumes to determine density. Four different metal cylinders are investigated.
Explanation:
Answer:
0.508 mole
Explanation:
NOTE: Since no hydrogen is attached to the compound given in question above, it means the compound is CCl₄.
The number of mole present in 78.2 g of CCl₄ can be obtained as follow:
Mass of CCl₄ = 78.2 g
Molar mass of CCl₄ = 12 + (35.5×4)
= 12 + 142
= 154 g/mol
Mole of CCl₄ =?
Mole = mass / molar mass
Mole of CCl₄ = 78.2 / 154
Mole of CCl₄ = 0.508 mole
Therefore, 0.508 mole is present in 78.2 g of CCl₄
The correct answer from the choices given is the third option. Covalent compounds have low boiling points. Also, their melting points are low. Covalent bonds have relatively low attractions which results to these properties. The bonds are easily broken by taking energy or adding energy.