Maybe they had to consider the habitat to make sure the habitat they were releasing the dragonflies into would be appropriate for the dragonflies.
Answer: ΔH for the reaction is -277.4 kJ
Explanation:
The balanced chemical reaction is,

The expression for enthalpy change is,
![\Delta H=\sum [n\times \Delta H(products)]-\sum [n\times \Delta H(reactant)]](https://tex.z-dn.net/?f=%5CDelta%20H%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H%28products%29%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H%28reactant%29%5D)
![\Delta H=[(n_{CCl_4}\times \Delta H_{CCl_4})+(n_{HCl}\times B.E_{HCl}) ]-[(n_{CH_4}\times \Delta H_{CH_4})+n_{Cl_2}\times \Delta H_{Cl_2}]](https://tex.z-dn.net/?f=%5CDelta%20H%3D%5B%28n_%7BCCl_4%7D%5Ctimes%20%5CDelta%20H_%7BCCl_4%7D%29%2B%28n_%7BHCl%7D%5Ctimes%20B.E_%7BHCl%7D%29%20%5D-%5B%28n_%7BCH_4%7D%5Ctimes%20%5CDelta%20H_%7BCH_4%7D%29%2Bn_%7BCl_2%7D%5Ctimes%20%5CDelta%20H_%7BCl_2%7D%5D)
where,
n = number of moles
Now put all the given values in this expression, we get
![\Delta H=[(1\times -139)+(1\times -92.31) ]-[(1\times -74.87)+(1\times 121.0]](https://tex.z-dn.net/?f=%5CDelta%20H%3D%5B%281%5Ctimes%20-139%29%2B%281%5Ctimes%20-92.31%29%20%5D-%5B%281%5Ctimes%20-74.87%29%2B%281%5Ctimes%20121.0%5D)

Therefore, the enthalpy change for this reaction is, -277.4 kJ
Density
=mass÷volume
=19.67÷5.90
=3.33 g/ml
Let's go over the given information. We have the volume, temperature and pressure. From the ideal gas equation, that's 4 out of 5 knowns. So, we actually don't need Pvap of water anymore. Assuming ideal gas, the solution is as follows:
PV=nRT
Solving for n,
n = PV/RT = (753 torr)(1 atm/760 torr)(195 mL)(1 L/1000 mL)/(0.0821 L·atm/mol·K)(25+273 K)
n = 7.897×10⁻³ mol H₂
The molar mass of H₂ is 2 g/mol.
Mass of H₂ = 7.897×10⁻³ mol * 2 g/mol = <em>0.016 g H₂</em>
Answer:
Normal boiling point is the temperature at which a liquid boils at 1 atmosphere of pressure.
Explanation: