Answer is: the ratio of the effusion rate is 1.59 : 1.
1) rate of effusion of carbon monoxide gas = 1/√M(CO).
rate of effusion of carbon monoxide gas = 1/√28.
rate of effusion of carbon monoxide gas = 0.189.
2) rate of effusion of chlorine = 1/√M(Cl₂).
rate of effusion of chlorine = 1/√70.9.
rate of effusion of chlorine = 0.119.
rate of effusion of carbon monoxide : rate of effusion of chlorine =
= 0.189 : 0.119 / ÷0.119.
rate of effusion of carbon monoxide : rate of effusion of chlorine = 1.59 : 1.
<span>Use the sequence E (NaCl, Na2SO4, then Na2S). Silver is insoluble as a chloride, so it would be removed first, the others (Pb and Ni) are soluble as chlorides(Note; lead chloride is soluble as a hot solution but will ppt when cold), next, PbSO4 is insoluble but NiSO4 is soluble so use Na2SO4 to separate lead from nickel. Lastly, nickel sulfide is insoluble and can be separated and collected.
Hope I helped :)</span>
Answer:
See explanation
Explanation:
Electron affinity is the energy released when an extra electron is added to a neutral gaseous atom. A negative value of electron affinity indicates that energy is given out and vice versa.
Metals have positive electron affinity since electrons rarely accept electrons, so;
Na(g)+ 1e^- → Na^-(g) positive
Mg(g)+1e^- → Mg^-(g) positive
For the last case; Br(g)+ 1e^- → Br^-(g), the electron affinity for the non-metals is negative. hence the answer
Answer:
The Bronsted-Lowery acid is H2O
The Bronsted-Lowery base is CO3
The conjugate acid is HCO3
The conjugate base is OH
Explanation:
Molocules that lose a hydrogen in a reaction act as an acid, and those that recieve one act as a base.
Pb(NO₃)₂ + (NH₄)₂CO₃ → PbCO₃ + 2 NH₄NO₃
Explanation:
Reaction of lead (II) nitrate with ammonium carbonate will produce lead (II) carbonate and ammonium nitrate.
The balanced chemical equation is:
Pb(NO₃)₂ + (NH₄)₂CO₃ → PbCO₃ + 2 NH₄NO₃
To balance the chemical equation the number of atoms of each element
entering the reaction have to be equal to the number of atoms of each
element leaving the reaction, in order to conserve the mass.
Learn more about:
balancing chemical reactions
brainly.com/question/13911443
#learnwithBrainly