1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Arisa [49]
3 years ago
11

198round to the nearest tens and hundreds

Mathematics
1 answer:
Xelga [282]3 years ago
8 0
198 round to the nearest hundreds is 200
198 round to the nearest tens is 200 too
You might be interested in
Help needed! How do I solve this?<br>Excuse the answers that are already in there!
anastassius [24]
1) 108
2) 72
3) 36
4) 72
5) 72
6) 144
7) 72
8) 72
9) 108
10) 108
I hope this helped
8 0
3 years ago
Which expression is equivalent to 12/7 + 15
Katen [24]
To solve this just put a 1 over the 15. So it would be 12/7 + 15/1 which is 16 5/7.
3 0
3 years ago
How many fourths is 2 3/4
rusak2 [61]

the answer is 11 forths

6 0
3 years ago
Read 2 more answers
There are 4 boxes of crayons that will be shared by 8 students. How many boxes of crayons does each student get? Choose the corr
rjkz [21]

Answer:

1/2 a box

Step-by-step explanation:

as you are sharing 4 objects between 8 people, all you have to do is divide them.

4 ÷ 8 = 0.5 (1/2)

7 0
3 years ago
Find the derivative: y={ (3x+1)cos(2x) } / e^2x​
DochEvi [55]

Answer:

\displaystyle y' = \frac{3cos(2x) -2(3x + 1)[sin(2x) + cos(2x)]}{e^{2x}}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Factoring
  • Exponential Rule [Dividing]:                                                                         \displaystyle \frac{b^m}{b^n} = b^{m - n}
  • Exponential Rule [Powering]:                                                                       \displaystyle (b^m)^n = b^{m \cdot n}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule:                                                                                                         \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Quotient Rule:                                                                                                       \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Trig Derivative:                                                                                                       \displaystyle \frac{d}{dx}[cos(u)] = -u'sin(u)

eˣ Derivative:                                                                                                         \displaystyle \frac{d}{dx}[e^u] = u'e^u

Step-by-step explanation:

<u>Step 1: Define</u>

\displaystyle y = \frac{(3x + 1)cos(2x)}{e^{2x}}

<u>Step 2: Differentiate</u>

  1. [Derivative] Quotient Rule:                                                                           \displaystyle y' = \frac{\frac{d}{dx}[(3x + 1)cos(2x)]e^{2x} - \frac{d}{dx}[e^{2x}](3x + 1)cos(2x)}{(e^{2x})^2}
  2. [Derivative] [Fraction - Numerator] eˣ derivative:                                       \displaystyle y' = \frac{\frac{d}{dx}[(3x + 1)cos(2x)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{(e^{2x})^2}
  3. [Derivative] [Fraction - Denominator] Exponential Rule - Powering:         \displaystyle y' = \frac{\frac{d}{dx}[(3x + 1)cos(2x)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  4. [Derivative] [Fraction - Numerator] Product Rule:                                       \displaystyle y' = \frac{[\frac{d}{dx}[3x + 1]cos(2x) + \frac{d}{dx}[cos(2x)](3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  5. [Derivative] [Fraction - Numerator] [Brackets] Basic Power Rule:             \displaystyle y' = \frac{[(1 \cdot 3x^{1 - 1})cos(2x) + \frac{d}{dx}[cos(2x)](3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  6. [Derivative] [Fraction - Numerator] [Brackets] (Parenthesis) Simplify:       \displaystyle y' = \frac{[3cos(2x) + \frac{d}{dx}[cos(2x)](3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  7. [Derivative] [Fraction - Numerator] [Brackets] Trig derivative:                   \displaystyle y' = \frac{[3cos(2x) -2sin(2x)(3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  8. [Derivative] [Fraction - Numerator] Factor:                                                   \displaystyle y' = \frac{e^{2x}[(3cos(2x) -2sin(2x)(3x + 1)) - 2(3x + 1)cos(2x)]}{e^{4x}}
  9. [Derivative] [Fraction] Simplify [Exponential Rule - Dividing]:                     \displaystyle y' = \frac{3cos(2x) -2sin(2x)(3x + 1) - 2(3x + 1)cos(2x)}{e^{2x}}
  10. [Derivative] [Fraction - Numerator] Factor:                                                   \displaystyle y' = \frac{3cos(2x) -2(3x + 1)[sin(2x) + cos(2x)]}{e^{2x}}

Topic: AP Calculus AB/BC

Unit: Derivatives

Book: College Calculus 10e

6 0
3 years ago
Other questions:
  • 17. What are the minimum, first quartile, median, third quartile, and maximum of the data set? 40, 7, 2, 35, 12, 23, 18, 28
    7·1 answer
  • Which of the following is the discriminant of the polynomial below?
    5·1 answer
  • Stanley has a collection of seashells. He found 35% of his collection on Florida beaches. If Stanley has 49 seashells from Flori
    10·1 answer
  • The volume of the cube is 216 cubic units what is the side length
    5·2 answers
  • The city zoo had an equal number of visitors on Sat. And Sun. In all they had 32,096 people visited the zoo that weekend
    8·1 answer
  • 2.<br> 2m2 + 18m + 36<br> Find the gcf
    14·1 answer
  • Allie found that 40% of the 170 patients she saw in a week were near-sighted
    14·1 answer
  • Harold has 7 bags, each containing the same number of marbles. He has a total of 42 marbles in the bag
    10·1 answer
  • Derek answered 42 out of 60 questions correct on the last test. What was his score as a percent?
    12·1 answer
  • I dont get this at all answer fast plz
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!