1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gelneren [198K]
3 years ago
9

One ring of radius a is uniformly charged with charge +Q and is placed so its axis is the x-axis. A second ring with charge –Q i

s placed concentric with the first and in the same plane. The radius of this ring is a/2. If a = 1m and Q = 3µC, what force is exerted on an electron 5m to the right of these along their common axis?
Physics
1 answer:
kati45 [8]3 years ago
8 0

Answer:

The force exerted on an electron is 7.2\times10^{-18}\ N

Explanation:

Given that,

Charge = 3 μC

Radius a=1 m

Distance  = 5 m

We need to calculate the electric field at any point on the axis of a charged ring

Using formula of electric field

E=\dfrac{kqx}{(a^2+x^2)^{\frac{3}{2}}}\hat{x}

E_{1}=\dfrac{kqx}{(a^2+x^2)^{\frac{3}{2}}}\hat{x}

Put the value into the formula

E_{1}=\dfrac{9\times10^{9}\times3\times10^{-6}\times5}{(1^2+5^2)^{\frac{3}{2}}}

E_{1}=1.0183\times10^{3}\ N/C

Using formula of electric field again

E_{2}=\dfrac{kqx}{(a^2+x^2)^{\frac{3}{2}}}\hat{x}

Put the value into the formula

E_{2}=\dfrac{9\times10^{9}\times(-3\times10^{-6})\times5}{((0.5)^2+5^2)^{\frac{3}{2}}}

E_{2}=-1.064\times10^{3}\ N/C

We need to calculate the resultant electric field

Using formula of electric field

E=E_{1}+E_{2}

Put the value into the formula

E=1.0183\times10^{3}-1.064\times10^{3}

E=-0.045\times10^{3}\ N/C

We need to calculate the force exerted on an electron

Using formula of electric field

E = \dfrac{F}{q}

F=E\times q

Put the value into the formula

F=-0.045\times10^{3}\times(-1.6\times10^{-19})

F=7.2\times10^{-18}\ N

Hence, The force exerted on an electron is 7.2\times10^{-18}\ N

You might be interested in
The distance between a charge and the source of an electric field changes from 3 mm to 6 mm. as a result of the change, the elec
STatiana [176]

The electric potential energy of the charge is reduced because it decreases with increase in the distance between charges.

<h3>What is electric potential energy?</h3>

Electric potential energy can be defined as the energy needed to move a charge against an electric field.

It is calculated using the formula;

U = Kq1 q2 ÷ r

Where Q = electric potential energy

k = Coulombs constant

q1 and q2 = charges

r = distance of separation

Electric potential energy is inversely proportional to the distance of separation of the charges.

If the distance of the charges changes from 3mm to 6mm, then the electric potential energy of the charges is reduced because it decreases with increase in the distance of the charges.

Therefore, the electric potential energy of the charge is reduced because it decreases with increase in the distance between charges.

Learn more about electric potential energy here:

brainly.com/question/14812976

#SPJ1

4 0
2 years ago
FREE POINTS!
san4es73 [151]

Answer:

Both conduction and convection require matter to transfer heat. ... Convection occurs when warmer areas of a liquid or gas rise to cooler areas in the liquid or gas. Cooler liquid or gas then takes the place of the warmer areas which have risen higher. This results in a continuous circulation pattern.

Explanation:

HOPE THIS HELPS!!!

4 0
3 years ago
Read 2 more answers
A police officer uses a radar gun to determine the speed of a car. A specialized radar gun uses ultraviolet light to determine t
Virty [35]

Answer:

A transverse and D electromagnetic

on edg2020

Explanation:

I got it right on the test

good luck

5 0
3 years ago
Read 2 more answers
A 2.0-kilogram ball rolls down a ramp. if the ball accelerates at a rate of 12 m/s2, the net force causing the acceleration is:
ehidna [41]

Answer:

D

Explanation:

f = ma

2 x 12 = 24

answer could differ since it's rolling down a ramp. if an angle is given our approach differs.

7 0
2 years ago
Three positive charges A, B, and C, and a negative charge D are placed in a line as shown in the diagram. All four charges are o
polet [3.4K]

Answer:

a. charge C experiences the greatest net force, and charge B receives the smallest net force

b. ratio=9

Explanation:

<u>Electrostatic Force</u>

Two point-charges q_1 and q_2 separated a distance d will exert a force on each other of a magnitude given by the Coulomb's formula

\displaystyle F=\frac{k\ q_1\ q_2}{r^2}

Where k is the proportional constant of value

k=9*10^9\ N.m^2/c^2

The diagram provided in the question shows four identical charges (let's assume their value is Q) separated by identical distance (of value d). The force between the charges next to others is

\displaystyle F_1=\frac{k\ Q\ Q}{d^2}

\displaystyle F_1=\frac{k\ Q^2}{d^2}

The force between charges separated 2d is

\displaystyle F_2=\frac{k\ Q^2}{(2d)^2}

\displaystyle F_2=\frac{k\ Q^2}{4d^2}

And the force between the charges A and D is

\displaystyle F_3=\frac{k\ Q^2}{(3d)^2}

\displaystyle F_3=\frac{k\ Q^2}{9d^2}

Now, let's analyze each charge and the force applied to them by the others

Let's recall equally signed charges repel each other and differently signed charges attrach each other

Charge A. It receives force to the left from B and C and to the right from D

\displaystyle F_A=-F_1-F_2+F_3=-\frac{k\ Q^2}{d^2}-\frac{k\ Q^2}{4d^2}+\frac{k\ Q^2}{9d^2}

\displaystyle F_A=\frac{k\ Q^2}{d^2}(-1-\frac{1}{4}+\frac{1}{9})

\displaystyle F_A=-\frac{41}{36}F_1

Charge B. It receives force to the right from A and D and to the left from C

\displaystyle F_B=F_1-F_1+F_2=\frac{k\ Q^2}{d^2}-\frac{k\ Q^2}{d^2}+\frac{k\ Q^2}{4d^2}

\displaystyle F_B=\frac{1}{4}F_1

Charge C. It receives forces to the right from all charges.

\displaystyle F_C=F_2+F_1+F_1=\frac{k\ Q^2}{4d^2}+\frac{k\ Q^2}{d^2}+\frac{k\ Q^2}{d^2}

\displaystyle F_C=\frac{9}{4}F_1

Charge D. It receives forces to the left from all charges

\displaystyle F_D=-F_3-F_2-F_1=-\frac{k\ Q^2}{9d^2}-\frac{k\ Q^2}{4d^2}-\frac{k\ Q^2}{d^2}

\displaystyle F_D=-\frac{49}{36}F_1

Comparing the magnitudes of each force is just a matter of computing the fractions

\displaystyle \frac{41}{36}=1.13,\ \frac{1}{4}=0.25,\ \frac{9}{4}=2.25,\ \frac{49}{36}=1.36

a.

We can see the charge C experiences the greatest net force, and charge B receives the smallest net force

b.

The ratio of the greatest to the smallest net force is

\displaystyle \frac{\frac{9}{4}}{\frac{1}{4}}=9

The greatest force is 9 times the smallest net force

7 0
3 years ago
Other questions:
  • How much energy is needed to melt 600 g of ice at 0 degrees C?
    5·1 answer
  • Which of the following statements is true?
    13·1 answer
  • How could the combustibility of a substance influence how the substances used
    11·1 answer
  • An antigen is a protein made by your body to respond to a specific foreign molecule.
    14·1 answer
  • How does the electric force between two charged objects change when the
    7·1 answer
  • Which type of circuit is shown?
    15·1 answer
  • Three equal charge 1.8*10^-8 each are located at the corner of an equilateral triangle ABC side 10cm.calculate the electric pote
    11·1 answer
  • An object is traveling with a constant velocity of 5 m/s. How far will it have gone after 7 s?
    7·1 answer
  • The chart shows data for a moving object.
    6·1 answer
  • Jan is holding an ice cube. What causes the ice to melt?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!