Answer:

Explanation:
When a projectile is fired upwards with some initial speed then the it reaches the top of the projectile and then falls back to the ground.
According to the question we need to find the work done by the gravity which is acting downwards for the projectile when it is at a position just about to hit the ground in course of falling down.
As we know that work is given as:

here:
force of gravity on the object (which is acting downwards)
displacement of the object
- Here the work done by the gravity at an instant just before the projectile hits the earth will be negative as the displacement is in the direction opposite to the force of gravity.
Answer:
A. "The electric force vector is along the direction of the electric field, whereas the magnetic force vector is perpendicular to the magnetic field."
D. "The kinetic energy of a charged particle moving in an electric field is not altered, whereas the kinetic energy of a charged particle moving in a magnetic field is either increased or decreased, depending on the direction of motion."
Explanation:
Electric fields originate from voltage differences, the higher the voltage, the stronger the resulting field. Magnetic fields originate from electric currents, a stronger current results in a stronger field. An electric field exists even if there is no current. When there is current, the magnitude of the magnetic field will change with power consumption, but the strength of the electric field will remain the same.
Answer:
water hydrates the earth's soil....
Answer:
Acceleration will be 
So option (D) will be correct answer
Explanation:
We have given angular speed of the electrical motor 
We have to change this angular speed in rad/sec for further calculation
So 
Armature radius is given r = 7.165 cm = 0.07165 m
We have to find the acceleration of edge of motor
Acceleration is given by 
So acceleration will be 
So option (D) will be correct answer