Change in velocity of larger moose: (1/3)v - v = -(2/3)v
<span>change in velocity of small moose: (1/3)v - (-v) = (4/3)v </span>
<span>- (change in velocity of larger moose)/(change in velocity of smaller moose) = 2
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.
</span>
<u>Answer
</u>
A. 1 and 2
<u>Explanation
</u>
At point 1 we have the highest potential energy and the kinetic energy is zero.
At 2 the potential energy is minimum and the kinetic energy is maximum.
The law of conservation of energy says that energy cannot be created nor destroyed. So, the change in P.E = Change in K.E.
P.E = height × gravity × mass. The height referred here is the perpendicular height. Gravity and mass are constant in this case.
From the diagram it can be seen clearly that the vertical height from 2 to 1 is much greater than from 4 to 3.
This shows that the change in P.E is greater between 1 and 2 and so is kinetic energy.
Over time, the types of technology can vary and be improved upon so that more advanced techniques become more valued. This could be the situation with mining whereby back in the 1500's in underground mines the rock was broken by fire setting ie lighting a fire below the rock face to heat up the rock and then throwing cold water on it to crack it, so that it could be dug by hand. With the advent of explosives, this all changed so that the rock could be blasted. The increase in advance rates for an underground heading have thus gone from 5-20 feet per month to up to 300meters (984 ft) per month for a 24/7 mining operation, which is a huge improvement.
Answer:
Newton's second law states that when a body of mass m is accelerated with force f
then F=ma
this means acceleration of an object depends on both force with which it is moving as well as its mass