Answer:
P O 2 = 5.21 atm P C O 2 = 4.79 atm
Explanation:
Hope it helps!
Answer:
Q = -14322.77 J
Explanation:
Given data:
Mass of water = 55.0 g
Initial temperature = 87.3°C
Final temperature = 25.0 °C
Heat given off = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Specific heat capacity of water is 4.18 J/g.°C
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 25.0 °C - 87.3°C
ΔT = - 62.3 °C
Q = 55.0 g×4.18 J/g.°C × - 62.3 °C
Q = -14322.77 J
Answer:
I think the first one
Explanation:
I'm not really sure but i count it
Answer:
D. 180.1 g/mol
Explanation:
Add up each of the masses of the elements in glucose and multiply them by the subscript number.
Carbon: 12.01 * 6 = 72.06
Hydrogen: 1.008 * 12 = 12.096
Oxygen: 16.00 * 6 = 96
72.06 + 12.096 + 96 = 180.156 g/mol ≈ 180.1 g/mol
*Molecular masses vary depending on which measurement / periodic table you use, so expect to be within a range, not exactly the same. My answer was closer to 180.2 g/mol, but it's still acceptable.