Here we have to calculate the heat required to raise the temperature of water from 85.0 ⁰F to 50.4 ⁰F.
10.857 kJ heat will be needed to raise the temperature from 50.4 ⁰F to 85.0 ⁰F
The amount of heat required to raise the temperature can be obtained from the equation H = m×s×(t₂-t₁).
Where H = Heat, s =specific gravity = 4.184 J/g.⁰C, m = mass = 135.0 g, t₁ (initial temperature) = 50.4 ⁰F or 10.222 ⁰C and t₂ (final temperature) = 85.0⁰F or 29.444 ⁰C.
On plugging the values we get:
H = 135.0 g × 4.184 J/g.⁰C×(29.444 - 10.222) ⁰C
Or, H = 10857.354 J or 10.857 kJ.
Thus 10857.354 J or 10.857 kJ heat will be needed to raise the temperature.
There are 207405.111 grams in that many pounds.
The moles of oxygen gas (O2) that is needed is 4 moles
Explanation
2H2 +O2 → 2H2O
The moles of O2 is determined using the mole ratio of H2:O2
that is from equation above H2:O2 is 2:1
If the moles of H2 is 8 moles therefore the moles of O2
= 8 moles x 1/2 = 4 moles
Answer:
Two tectonic plates had the same density and a collision of the plates pushed the advancing plate that contained fossilized marine organisms upward forming the Himalayan mountains and Mount Everest.
Explanation:
A metal with one valence electron is highly reactive compared to those with more than one electron.
Atoms including those of metals reacts in order attain a stable electronic configuration just like those of noble gases.
An atom with one valence electron have just one electron in its valence shell.
- Metals generally have large sizes.
- when the electron in this shell is lost, the metal atom can then attain stability.
- therefore, such atom will quickly want to combine with any other willing to accept the electron so that they can be stable.
- Those with more than one electron will find it difficult to lose them.
- It requires huge energy to remove such electrons compared to the ones with only one valence electron.
learn more:
Valence electrons brainly.com/question/3023499
#learnwithBrainly