Answer: c
that is the answer
The balanced equation of the reaction is:
O3(g) + NO (g) → O2 (g) + NO2 (g)
Then the ratios of reaction is 1 mol O3 : 1 mol NO : 1 mol O2 : 1 mol NO2
If you have initially 0.05 M of O3 and 0.02 M of NO, the reaction will end when all the NO is consumed.
The by the stoichiometry 0.02 mol of O3 will be consumed in 8 seconds.
And the rate of reaction is change in concetration divided by the time.
The change in concentration in O3 is 0.02 M
Then, the rate respect O3 is 0.02 M / 8 seconds = 0.0025 M/s
Lovely song just asking is there a question so I don't get hate for not knowing rather there's a question or not
Explanation:
Given
The enthalpy of formation of RbF (s) is –557.7kJ/mol
The standard enthalpy of formation of RbF (aq, 1 m) is –583.8 kJ/mol
The enthalpy of solution of RbF = Enthalpy of RbF (aq) - Enthalpy of formation of RbF (s)
= -583.8 - (-557.7) kJ/mol
= -26.1 kJ/mol
The enthalpy is negative which means that the temperature will rise when RbF is dissolved.