Answer:
Because only a few bacterias can "fix" the atmosphere nitrogen.
Explanation:
The nitrogen at the atmosphere is in the form of N₂ and represents 78% of the atmosphere composition. The element is part of the constitution of nucleic acids and proteins, so the living beings needed them.
However, the animals and the plants can't catch the N₂. Some bacterias that live in mutualism with plants have this ability, and they "fix" the atmosphere nitrogen, transforming the N₂ in the ions nitrite (NO₃⁻) or ammonia (NH₃), which can be caught by the plants.
Them, when the primary consumers eat the plants they catch the nitrogen, which will be passed through the food chain.
So, it's difficult to pull nitrogen from the atmosphere into the nitrogen cycle of the biosphere because only a few bacterias can do it.
The factors that affect the rate of a reaction are:
- <em>nature of the reactant</em> - when reactants with different chemical composition are exposed to same conditions they would react differently. For instance, when an acid or base is added on litmus paper, blue litmus paper turns red in presence of acid while red litmus paper turns blue when base is added.
- <em>surface area</em>- a compound with small pieces spread over a large area will react faster than a big lump of a compound occupying a small area.
- <em>temperature of reaction</em>- reactants would react faster at high temperatures. this is because they have higher kinetic energy to collide with each other. Hence a plate of food on the table spoils faster than a plate of food in the fridge.
- <em>concentration</em>- an increase in concentration leads to more molecules available to collide and form products. An example, when you add more of indicator in a solution, the color becomes more clear since more particles react to give more color.
- <em>presence of a catalyst</em>- a catalyst lowers the activation energy, which means less energy is required to shift reaction in forward direction. In the presence of iron (Fe) a catalyst, nitrogen N₂ and hydrogen H₂ react to produce NH₃
Answer:
T₂ = 51826.1 K
Explanation:
Given data:
Initial Volume = 2.3 L
Final volume = 400 L
Initial temperature = 25 °C (25+ 273 = 298 K)
Final temperature = ?
Solution:
V₁/T₁ = V₂/T₂
T₂ = V₂ T₁/V₁
T₂ = 400 L . 298 K / 2.3 L
T₂ = 119200 K. L / 2.3 L
T₂ = 51826.1 K
Answer:
A1. Sr + 2
A2. P - 3
B1. Sr3P2
Explanation:
A1. Strontium ion | Sr+2
Description: Strontium(2+) is a strontium cation
Molecular Formula: Sr+2
A2. PubChem CID 5182128
Structure Find Similar Structures
Molecular Formula P-3
B. Strontium phosphide
PubChem CID 166710
Structure Find Similar Structures
Molecular Formula Sr3P2 or P2Sr3
Potential energy is measured In joules (j)