This problem uses the relationships among current
I, current density
J, and drift speed
vd. We are given the total of electrons that pass through the wire in
t = 3s and the area
A, so we use the following equation to to find
vd, from
J and the known electron density
n,
so:

<span>The current
I is any motion of charge from one region to another, so this is given by:
</span>

The magnitude of the current density is:

Being:

<span>
Finally, for the drift velocity magnitude vd, we find:
</span>
Notice: The current I is very high for this wire. The given values of the variables are a little bit odd
consider the motion along the X-direction
X = horizontal displacement = 80 m
= initial velocity along the x-direction = v Cos60
t = time of travel
using the equation
X =
t
80 = (v Cos60) (t)
t = 160/v eq-1
consider the motion in vertical direction :
Y = vertical displacement = 20 m
= initial velocity in Y-direction = v Sin60
a = acceleration = - 9.8 m/s²
t = time of travel = 160/v
using the equation
Y =
t + (0.5) a t²
20 = (v Sin60) (160/v) + (0.5) (- 9.8) (160/v)²
v = 32.5 m/s
Answer:
Violet Light
Explanation:
On one end of the spectrum is red light, with the longest wavelength. Blue or violet light has the shortest wavelength. White light is a combination of all colors in the color spectrum. It has all the colors of the rainbow.
Answer:
C). 
Explanation:
As we know that capacitance of a given capacitor is

now we know that energy stored in the capacitor plates

here if all the dimensions of the capacitor plate is doubled
then in that case

here area becomes 4 times on doubling the radius and the distance between the plates also doubles
So new capacitance is now

so capacitance is doubled
now the final energy stored between the plates of capacitor is given as

so the final energy is


Answer:
The correct answer will be option-B.
Explanation:
A scientific hypothesis is the proposed perdition or idea which is based on the earlier works and knowledge related to the scientific issue. The hypothesis can be tested and proved on the basis of the experiments.
The proved hypothesis can either become law or theory after peer-reviewed by fellow scientists. If the hypothesis still has predictive capabilities help form another hypothesis. Such statements are known as the "theory".
Thus, Option-B is the correct answer.