That measure is known as "acceleration"
a = ΔV / t
Hope this helps!
Hey there! :D
Yes, indeed! Magnetic is a form of energy. It pushes or pulls to forces together. A lot of this energy is through waves, and opposite and like poles.
I hope this helps!
~kaikers
Answer:
A)
0.395 m
B)
2.4 m/s
Explanation:
A)
= mass of the cart = 1.4 kg
= spring constant of the spring = 50 Nm⁻¹
= initial position of spring from equilibrium position = 0.21 m
= initial speed of the cart = 2.0 ms⁻¹
= amplitude of the oscillation = ?
Using conservation of energy
Final spring energy = initial kinetic energy + initial spring energy

B)
= mass of the cart = 1.4 kg
= spring constant of the spring = 50 Nm⁻¹
= amplitude of the oscillation = 0.395 m
= maximum speed at the equilibrium position
Using conservation of energy
Kinetic energy at equilibrium position = maximum spring potential energy at extreme stretch of the spring

Answer:
The kinetic energy of bocce ball is more.
Explanation:
Given that,
Mass of a bowling ball, m₁ = 4 kg
Speed of the bowling ball, v₁ = 1 m/s
Mass of bocce ball, m₂ = 1 kg
Speed of bocce ball, v₂ = 4 m/s
We need to say which has more kinetic energy.
The kinetic energy of an object is given by :

Kinetic energy of the bowling ball,

The kinetic energy of the bocce ball,

So, the kinetic energy of bocce ball is more than that of bowling ball.
Answer:

Explanation:
It is given that,
Diameter of cylinder, d = 6.6 cm
Radius of cylinder, r = 3.3 cm = 0.033 m
Acceleration of the string, 
Displacement, d = 1.3 m
The angular acceleration is given by :



The angular displacement is given by :



Using the third equation of rotational kinematics as :

Here, 



Since, 1 rad/s = 9.54 rpm
So,

So, the angular speed of the cylinder is 571.42 rpm. Hence, this is the required solution.