Answer:
1.5 m
Explanation:
Let the distance from the box to the pivot be c.
Let the distance from the pivot to the effort be y.
From the question given above, the following data were obtained:
Effort force (Fₑ) = 7 N
Force of resistance (Fᵣ) = 14 N
Distance from the box to the pivot (c) = 0.75 m
Distance from the pivot to the effort (y) =?
Clockwise moment = Fₑ × y
Anticlock wise moment = Fᵣ × c
Clockwise moment = Anticlock wise moment
Fₑ × y = Fᵣ × c
7 × y = 14 × 0.75
7 × y = 10.5
Divide both side by 7
y = 10.5 / 7
y = 1.5 m
Therefore, the distance from the pivot to the effort is 1.5 m
Answer:
g'(10) =
Explanation:
Since g is the inverse of f ,
We can write
g(f(x)) = x <em> </em><em>(Identity)</em>
Differentiating both sides of the equation we get,
g'(f(x)).f'(x) = 1
g'(10) = --equation[1] Where f(x) = 10
Now, we have to find x when f(x) = 10
Thus 10 = + 2
= 8
x =
Since f(x) = + 2
f'(x) = -
f'() = -4 × 4 = -16
Putting it in equation 1, we get:
We get g'(10) = -
Answer:
25 m/s
Explanation:
Impulse = change in momentum
F Δt = m Δv
(3750 N) (0.5 s) = (75 kg) (v − 0 m/s)
v = 25 m/s