1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Maslowich
3 years ago
12

Two resistors are to be combined in parallelto form an equivalent resistance of 400Ω. The resistors are takenfrom available stoc

k on hand as acquired over the years. Readily available are two common resistorsrated at 500±50 Ωand two common resistors rated at 2000 Ω±5%. What isthe uncertainty in an equivalent 400 Ωresistance?(Hint: the equivalent resistance connected in parallel can be obtained by 1212TRRRRR=+)
Physics
1 answer:
vivado [14]3 years ago
6 0

Answer:

ΔR_{e} = 84   Ω,     R_{e} = (40 ± 8) 10¹   Ω

Explanation:

The formula for parallel equivalent resistance is

          1 / R_{e} = ∑ 1 / Ri

In our case we use a resistance of each

           R₁ = 500 ± 50  Ω

          R₂ = 2000 ± 5%

This percentage equals

        0.05 = ΔR₂ / R₂

        ΔR₂ = 0.05 R₂

        ΔR₂ = 0.05 2000 = 100   Ω

We write the resistance

        R₂ = 2000 ± 100    Ω

We apply the initial formula

        1 / R_{e} = 1 / R₁ + 1 / R₂

        1 / R_{e} = 1/500 + 1/2000 = 0.0025

        R_{e}  = 400    Ω

Let's look for the error  (uncertainly) of Re

      R_{e} = R₁R₂ / (R₁ + R₂)

       R’= R₁ + R₂

       R_{e} = R₁R₂ / R’

Let's look for the uncertainty of this equation

      ΔR_{e} / R_{e} = ΔR₁ / R₁ + ΔR₂ / R₂ + ΔR’/ R’

The uncertainty of a sum is

      ΔR’= ΔR₁ + ΔR₂

We substitute the values

     ΔR_{e} / 400 = 50/500 + 100/2000 + (50 +100) / (500 + 2000)

     ΔR_{e} / 400 = 0.1 + 0.05 + 0.06

     ΔR_{e} = 0.21 400

     ΔR_{e} = 84   Ω

Let's write the resistance value with the correct significant figures

    R_{e} = (40 ± 8) 10¹   Ω

You might be interested in
Can you please answers these for me please today is the last day to turn in work and I need this to pass please I’m begging than
Ymorist [56]

Answer:

1.   <u>F = ma</u>  <em>F = 0.2kg * 20m/s² = 4Kg * m/s² =</em> 4N

2.  <u>F = ma</u>  <em>F - 18Kg * 3m/s² = 54Kg * m/s² =</em> 54N

3.  <u>F = ma</u>  <em>F = 0.025Kg * 5m/s² =</em> 0.125N

4.  <u>F = ma</u>  <em>F = 50Kg * 4m/s² =</em> 200N

5.  <u>F = ma</u>  <em>F = 70Kg * 4m/s² =</em> 280N

6.  <u>F = ma</u>  <em>F = 9Kg * 9.8m/s² =</em> 88.2N

Explanation:

Hope this helps ! ^^

8 0
2 years ago
in the derivation of the time period of a pendulum in electric field when considering the fbd of bob to find the g effective why
Neko [114]

Answer:

we learned that an object that is vibrating is acted upon by a restoring force. The restoring force causes the vibrating object to slow down as it moves away from the equilibrium position and to speed up as it approaches the equilibrium position. It is this restoring force that is responsible for the vibration. So what forces act upon a pendulum bob? And what is the restoring force for a pendulum? There are two dominant forces acting upon a pendulum bob at all times during the course of its motion. There is the force of gravity that acts downward upon the bob. It results from the Earth's mass attracting the mass of the bob. And there is a tension force acting upward and towards the pivot point of the pendulum. The tension force results from the string pulling upon the bob of the pendulum. In our discussion, we will ignore the influence of air resistance - a third force that always opposes the motion of the bob as it swings to and fro. The air resistance force is relatively weak compared to the two dominant forces.

The gravity force is highly predictable; it is always in the same direction (down) and always of the same magnitude - mass*9.8 N/kg. The tension force is considerably less predictable. Both its direction and its magnitude change as the bob swings to and fro. The direction of the tension force is always towards the pivot point. So as the bob swings to the left of its equilibrium position, the tension force is at an angle - directed upwards and to the right. And as the bob swings to the right of its equilibrium position, the tension is directed upwards and to the left. The diagram below depicts the direction of these two forces at five different positions over the course of the pendulum's path.

that's what I know so far

8 0
3 years ago
A plane mirror of circular shape with radius r=20cm is fixed to the ceiling. A bulb is to be placed on the axis of the mirror. A
KIM [24]

Answer:

0.75 m

Explanation:

Let's call the distance between the bulb and the mirror x.

The bulb and the length of the mirror form a triangle.  The mirror and the illuminated area on the floor form a trapezoid.  If we extend the lines from the mirror edge to the reflected image of the bulb, we turn that trapezoid into a large triangle.  This triangle and the small triangle are similar.  So we can say:

x / 0.4 = (3 + x) / 2

Solving for x:

2x = 0.4 (3 + x)

2x = 1.2 + 0.4 x

1.6 x = 1.2

x = 0.75

So the bulb should located no more than 0.75 m from the mirror.

5 0
3 years ago
Aloop of wire of area 71 cm^2 is placed with its plane parallel to a 16 mt magnetic field. the loop is then rotated so that its
kkurt [141]

Answer:

Approximately 1.62 × 10⁻⁴ V.

Explanation:

The average EMF in the coil is equal to

\displaystyle \frac{\text{Final Magnetic Flux} - \text{Initial Magnetic Flux}}{2},

Why does this formula work?

By Faraday's Law of Induction, the EMF \epsilon induced in a coil (one loop) is equal to the rate of change in the magnetic flux \Phi through the coil.

\displaystyle \epsilon(t) = \frac{d}{dt}(\Phi(t)).

Finding the average EMF in the coil is similar to finding the average velocity.

\displaystyle \text{Average}\; \epsilon = \frac{1}{t}\int_0^t \epsilon(t)\cdot dt.

However, by the Fundamental Theorem of Calculus, integration reverts the action of differentiation. That is:

\displaystyle \int_0^{t} \epsilon(t)\cdot dt = \int_0^{t} \frac{d}{dt}\Phi(t)\cdot dt = \Phi(t) - \Phi(0).

Hence the equation

\displaystyle \text{Average}\; \epsilon = \frac{1}{t}\int_0^t \epsilon(t)\cdot dt = \frac{\Phi(t)- \Phi(0)}{t}.

Note that information about the constant term in the original function will be lost. However, since this integral is a definite one, the constant term in \Phi(t) won't matter.

Apply this formula to this question. Note that \Phi, the magnetic flux through the coil, can be calculated with the equation

\Phi = B \cdot A \cdot N \; \sin{\theta}.

For this question,

  • B = \rm 16\; mT = 16\times 10^{-3}\; T is the strength of the magnetic field.
  • A = \rm 71\; cm^{2} = 71\times \left(10^{-2}\right)^2 \; m^{2} is the area of the coil.
  • N = 1 is the number of loops in the coil.
  • \theta is the angle between the field lines and the coil.
  • At \rm 0\;s, the field lines are parallel to the coil, \theta = 0^{\circ}.
  • At \rm 0.7\; s, the field lines are perpendicular to the coil, \displaystyle \theta = 90^{\circ}.

Initial flux: \Phi(0)= 0.

Final flux: \Phi(0.7) = \rm 1.1136\times 10^{-4}\; Wb.

Average EMF, which is the same as the average rate of change in flux:

\displaystyle \frac{\Phi(0.7) - \Phi(0)}{0.7} \approx\rm 1.62\times 10^{-4}\; V.

8 0
3 years ago
It is claimed that if a lead bullet goes fast enough, it can melt completely when it comes to a halt suddenly, and all its kinet
Amiraneli [1.4K]

Answer:

354.72 m/s

Explanation:

m = mass of lead bullet

c = specific heat of lead = 128 J/(kg °C)

L = Latent heat of fusion of lead = 24500 J/kg

T_{i} = initial temperature = 27.4 °C

T_{f} = final temperature = melting point of lead =  327.5 °C

v = Speed of lead bullet

Using conservation of energy

Kinetic energy of bullet = Heat required for change of temperature + Heat of melting

(0.5) m v^{2} = m c (T_{f} - T_{i}) + m L\\(0.5) v^{2} = c (T_{f} - T_{i}) + L\\(0.5) v^{2} = (128) (327.5 - 27.4) + 24500\\(0.5) v^{2} = 62912.8\\v = 354.72 ms^{-1}

3 0
2 years ago
Other questions:
  • The high spark voltage supplied to the spark plugs of an automobile is increased from the battery voltage by the principle of .
    6·1 answer
  • What is the role of electrical forces in nuclear fission
    11·1 answer
  • A hockey puck sliding on the ice has ______.
    14·2 answers
  • Three negative point charges q1 =-5 nC, q2 = -2 nC and q3 = -5 nC lie along a vertical line. The charge q2 lies exactly between
    8·1 answer
  • A gene carries the blank for the trait
    9·1 answer
  • .What is the relationship between the solar radius and the brightness of stars?
    7·1 answer
  • This is the given equation of vibration of
    15·1 answer
  • An 800 kHz radio signal is detected at a point 3.2 km distant from a transmitter tower. The electric field amplitude of the sign
    11·1 answer
  • Enunciado del ejercicio n° 1
    9·1 answer
  • 34.1 grams / 1.1 mL =
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!