Answer:
Vf = 69.56 cm/s
Explanation:
In order to find the final speed of the ramp, we will use the equations of motion. First we use second equation of motion to find out the acceleration of marble:
s = Vi t + (1/2)at²
where,
s = distance traveled = 160 cm
Vi = Initial Speed = 0 cm/s (since, marble starts from rest)
t = time interval = 4.6 s
a = acceleration = ?
Therefore,
160 cm = (0 cm/s)(4.6 s) + (1/2)(a)(4.6 s)²
a = (320 cm)/(4.6 s)²
a = 15.12 cm/s²
Now, we use first equation of motion:
Vf = Vi + at
Vf = 0 cm/s + (15.12 cm/s²)(4.6 s)
<u>Vf = 69.56 cm/s</u>
There are lots of variables that directly and indirectly contribute to the presence of gas on a surface
if the size of a planet is relatively small it will in turn be that of a smaller area which results in the less area to be covered for gas which basically means higher presence
I can go in depth more but I don't think that would be necessary all you need to know is this ...based on the size and gas will in turn be parallel to it's conformity
final velocity = initial
velocity + (acceleration x time) <span>
3.9 m/s = 0 m/s + (acceleration x 0.11 s)
3.9 m/s / 0.11 s = acceleration
30.45 m/s^2 = acceleration
distance = (initial velocity x time) +
1/2(acceleration)(time^2)
distance (0 m/s x 0.11 s) + 1/2(30.45 m/s^2)(0.11s ^2)
<span>distance = 0.18 m</span></span>
I hope I'm not too late.
GPE = mass * gravity * height
GPE = 2 kg * 9.8 m/s * 10
GPE = 196 Joules