Answer:
1) Transition states are short-lived
Explanation:
Transition state theory explains the rates of elementary chemical reactions. It assumes a quasi-equilibrium between reactants and activated transition state complexes.
The following are the characteristics of transition states
- Instability
- Ill-defined
- High energy
- short-lived
The species that must collide for the reaction to occur are shown by the mechanism of reaction and not the balanced reaction itself
Intermediates are consumed in each step of the overall reaction, they are not short lived
The best activity for her to do to improve her range of motion is flexibility.
<h3>What are a few range of motion illustrations?</h3>
The term the range of motion (ROM) describes the extent to which a joint or muscle may be moved or stretched. Everybody has a distinct experience. For instance, whereas some people can perform a complete split, others cannot because their joints are stiff and their muscles are unable to extend as far.
<h3>What restricts motion range?</h3>
A joint is said to have a restricted range of motion when it cannot move easily and completely in its typical position. A mechanical issue within the joint, swollen tissues around the joint, or pain may restrict motion.
To knoiw more about range of motion visit:
brainly.com/question/13403291
#SPJ1
Thermal energy Thermal energy <span>Thermal energy</span>
This question is not complete.
The complete question is as follows:
One problem for humans living in outer space is that they are apparently weightless. One way around this problem is to design a space station that spins about its center at a constant rate. This creates “artificial gravity” at the outside rim of the station. (a) If the diameter of the space station is 800 m, how many revolutions per minute are needed for the “artificial gravity” acceleration to be 9.80m/s2?
Explanation:
a. Using the expression;
T = 2π√R/g
where R = radius of the space = diameter/2
R = 800/2 = 400m
g= acceleration due to gravity = 9.8m/s^2
1/T = number of revolutions per second
T = 2π√R/g
T = 2 x 3.14 x √400/9.8
T = 6.28 x 6.39 = 40.13
1/T = 1/40.13 = 0.025 x 60 = 1.5 revolution/minute