Answer:
D. moving slow at a constant speed and traveling along a straight line
Answer:
The maximum mass the bar can support without yielding = 32408.26 kg
Explanation:
Yield stress of the material (
) = 200 M Pa
Diameter of the bar = 4.5 cm = 45 mm
We know that yield stress of the bar is given by the formula
Yield Stress = 
⇒
=
---------------- (1)
⇒ Area of the bar (A) =
×
⇒ A =
× 
⇒ A = 1589.625 
Put all the values in equation (1) we get
⇒
= 200 × 1589.625
⇒
= 317925 N
In this bar the
is equal to the weight of the bar.
⇒
=
× g
Where
is the maximum mass the bar can support.
⇒
= 
Put all the values in the above formula we get
⇒
= 
⇒
= 32408.26 Kg
There fore the maximum mass the bar can support without yielding = 32408.26 kg
Energy- the ability to do work/how things can change and move
Types
Potential Energy
Kinetic Energy
Nuclear Energy
Mechanical Energy
Sound Energy
Heat
Answer:
#_photons = 30 photons / s
Explanation:
Let's start by finding the energy of a photon of light, let's use the Planck relation
E = h f
the speed of light is related to wavelength and frequency
c = λ f
we substitute
E = h c /λ
E₀ = 6.63 10⁻³⁴ 3 10⁸/500 10⁻⁹
E₀ = 3.978 10⁻¹⁹ J
now let's use a direct proportion rule. If the energy of a photon is Eo, how many fornes has an energy E = 1.2 10⁻¹⁷ J in a second
#_photons = 1 photon (E / Eo)
#_photons = 1 1.2 10⁻¹⁷ /3.978 10⁻¹⁹
#_photons = 3.0 10¹
#_photons = 30 photons / s
Answer:
This can be used to find out the speed of the returned journey. The equation means speed = returned distance ÷ time.
Explanation: