Time taken by the package to reach the sea level= 13.7 s
height=h=925 m
initial velocity along vertical= vi=0
acceleration due to gravity=g=9.8 m/s^2
using the kinematic equation h= Vi*t + 1/2 gt^2
925=0(t)+1/2 (9.8)t^2
4.9 t^2=925
t= 13.7 s
The period of the transverse wave from what we have here is 0.5
<h3>How to find the period of the transverse wave</h3>
The period of a wave can be defined as the time that it would take for the wave to complete one complete vibrational cycle.
The formula with which to get the period is
w = 4π
where w = 4 x 22/7
2π/T = 4π
6.2857/T = 12.57
From here we would have to cross multiply
6.2857 = 12.57T
divide through by 12.57
6.2857/12.57 = T
0.500 = T
Hence we can conclude that the value of T that can determine the period based on the question is 0.500.
Read more on transverse wave here
brainly.com/question/2516098
#SPJ4
<h2>
The asteroid is 4.11 x 10¹¹ m far from Sun</h2>
Explanation:
We have gravitational force

Where G = 6.67 x 10⁻¹¹ N m²/kg²
M = Mass of body 1
M = Mass of body 2
r = Distance between them
Here we have
M = Mass of Sun = 1.99×10³⁰ kg
m = Mass of asteroid = 4.00×10¹⁶ kg
F = 3.14×10¹³ N
Substituting

The asteroid is 4.11 x 10¹¹ m far from Sun
Answer:
True
Explanation:
Pressure is defined as:

where
F is the magnitude of the force perpendicular to the surface
A is the surface
Therefore, pressure is inversely proportional to the area of the surface:

this means that, assuming that the forces in the two situations (which have same magnitude) are both applied perpendicular to the surface, the force exerted over the smaller area will exert a greater pressure. Hence, the statement"
<em>"A force acting over a large area will exert less pressure per square inch than the same force acting over a smaller area"</em>
is true.
Answer:
time=4s
Explanation:
we know that in a RL circuit with a resistance R, an inductance L and a battery of emf E, the current (i) will vary in following fashion
, where
max=
Given that, at i(2)=
⇒
⇒
⇒
Applying logarithm on both sides,
⇒
⇒
⇒
Now substitute 
⇒
⇒
⇒
Applying logarithm on both sides,
⇒
⇒
⇒
now subs. 
⇒
also 
⇒
⇒