Answer:
The current in the primary is 0.026 A
Explanation:
Using the formula
I1 = (V1/V2)*I2
we have
I1 = (6.4/120)*0.500
I1 = 0.026 A
Answer:
f = 931.1 Hz
Explanation:
Given,
Mass of the wire, m = 0.325 g
Length of the stretch, L = 57.7 cm = 0.577 m
Tension in the wire, T = 650 N
Frequency for the first harmonic = ?
we know,

μ is the mass per unit length
μ = 0.325 x 10⁻³/ 0.577
μ = 0.563 x 10⁻³ Kg/m
now,

v = 1074.49 m/s
The wire is fixed at both ends. Nodes occur at fixed ends.
For First harmonic when there is a node at each end and the longest possible wavelength will have condition
λ=2 L
λ=2 x 0.577 = 1.154 m
we now,
v = f λ


f = 931.1 Hz
The frequency for first harmonic is equal to f = 931.1 Hz
Explanation:
The height of the rise of liquid with capillary tube is given by the formula as follows :

Where
r is radius
It is clear that the height of the rise of liquid is inversely proportional to the radius of the capillary tube.
If the radius of the capillary tube is doubled, it means the height of rise of liquid with capillary tube become half.
Answer: 909 m/s
Explanation:
Given
Mass of the bullet, m1 = 0.05 kg
Mass of the wooden block, m2 = 5 kg
Final velocities of the block and bullet, v = 9 m/s
Initial velocity of the bullet v1 = ? m/s
From the question, we would notice that there is just an object (i.e the bullet) moving before the collision. Also, even after the collision between the bullet and wood, the bullet and the wood would move as one object. Thus, we would use the conservation of momentum to solve
m1v1 = (m1 + m2) v, on substituting, we have
0.05 * v1 = (0.05 + 5) * 9
0.05 * v1 = 5.05 * 9
0.05 * v1 = 45.45
v1 = 45.45 / 0.05
v1 = 909 m/s
Thus, the original velocity of the bullet was 909 m/s