Answer:
1. Reflection
2. travel from one medium to another
3. Same waves to travel in opposite direction.
Explanation:
1. When a wave strikes a solid barrier, it bounces back in the same medium. This wave behavior of bouncing back is known as reflection. Its like a basketball hitting a backboard. The ball bounces back at the same angle as it was incident. ∠i = ∠r
2. For refraction to occur in a wave, the wave must travel from one medium to another. When light travels from through mediums of different optical densities, it bends. The wave bends away normal when it enters from denser medium to rarer medium. The wave bends towards the normal when it enters from rarer to denser medium. The angle of refraction and angle of incidence are related by Snell's law.

3. The formation of standing wave requires two same waves to travel in the opposite direction and interfere. The incident wave and reflected wave when interfere, form standing waves. There waves are also resonances or harmonics. A standing wave oscillates at one place and does not transfers any energy.
Speed/acceleration = time
45/7
6.4
You have to round the decimal to 6.4
Explanation:
Given that,
Object distance u= -110 cm
Image distance v= 55 cm
We need to calculate the focal length for diverging lens
Using formula of lens

Put the value into the formula


The focal length of the diverging lens is 36.6 cm.
Now given a thin lens with same magnitude of focal length 36.6 cm is replaced.
Here, The object distance is again the same.
We need to calculate the image distance for converging lens
Using formula of lens

Here, focal length is positive for converging lens



The distance of the image is 54.85 cm from converging lens.
Hence, This is the required solution.
Answer:
<h2>The answer is 12 m</h2>
Explanation:
The distance covered by an object given it's velocity and time taken can be found by using the formula
distance = velocity × time
From the question we have
distance = 2 × 6
We have the final answer as
<h3>12 m</h3>
Hope this helps you