1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ber [7]
3 years ago
13

HELP ME (for b show work pls thank you!

Mathematics
1 answer:
emmasim [6.3K]3 years ago
5 0
For A put 160 (division sign} 4. 
For B put -40 
You might be interested in
A kite is flying with its string, which is of length 60 metres, taut.The kite is 20 metres vertically above the ground.a)Find th
chubhunter [2.5K]

a) Due to you have a right triangle, in order to calculate the value of d, use the Pythagorean thorem:

d=\sqrt[]{(60m)^2+(20m)^2}=\sqrt[]{4000m^2}\approx63.2m

Hence, the distance d is approximately 63.2m

b) To find the angle of elevation, use the sine function of θ, as follow:

\begin{gathered} \sin \theta=\frac{opposite}{hypotenuse}=\frac{20m}{60m}=\frac{1}{3} \\ \theta=\sin ^{-1}(\frac{1}{3})\approx19.8 \end{gathered}

Hence, the angle of elevation is approximately 19.8°

5 0
1 year ago
1. Joshua has a ladder that is 17 ft long. He wants to lean the ladder against a vertical wall so that the top of the ladder is
Molodets [167]

Answer:

The question is asking to solve a problem that'll "add up", or in other words, makes sense; through the use of Trigonometric functions. The leaning ladder is the hypotenuse of 17ft, adjacent to that is a wall that measures 16.5ft above the ground. The angle both sides make must be <=70°. The function here is Opposite over Hypotenuse i.e 16.5/17 . We use the inverse operation of Sin which is Sin^(-1) to find if the angle is < or = to 70°. Using a calculator, we find the angle to be 76.06°, which is > more than, 70°.

Thus, the ladder will not be safe for its height and therefore won't make sense.

7 0
3 years ago
Read 2 more answers
Convert the angle theta = 70 radians ​
bulgar [2K]

Answer: 7pi/18

Step-by-step explanation:

5 0
3 years ago
Se desea construir una letra "ene" mayúscula de tal manera que sus segmentos paralelos midan 25 cm y el
Anna71 [15]

Answer:

La distancia en línea recta que separa los segmentos paralelos es 60cm.

Step-by-step explanation:

Esta pregunta se puede resolver usando el <em>teorema de Pitágoras</em>:

\\ c^2 = a^2 + b^2 [1]

Es decir, en <em>triángulos rectágulos</em>, el cuadrado de la hipotenusa es igual a la suma de los cuadrados de los catetos de dicho triángulo. Un triángulo es rectángulo cuando el ángulo que forman sus dos catetos es recto o de 90 grados sexagesimales.

Es importante notar que la letra N tiene dos lados paralelos y el lado oblicuo (o inclinado) une ambos lados paralelos. Pues bien, la letra N puede formar dos triángulos iguales. Escojamos uno de ellos para obtener la respuesta, es decir, <em>la distancia en línea recta que separa los segmentos paralelos</em> (segmentos verticales de la N)

El <em>lado oblicuo</em> (inclinado) es la <em>hipotenusa de ese triángulo </em>(es decir, c)<em>. </em>De los catetos, uno está representado por uno de los <em>segmentos paralelos</em> (verticales) de la N (digamos que es b), y, el otro cateto, es la <em>distancia horizontal</em> que une ambos segmentos verticales (digamos que es a).

Si unimos el segmento inferior del <em>cateto b</em> con el extremo inferior de la <em>hipotenusa</em>, se forma el <em>cateto </em><em>a</em>. Este <em>cateto a</em> forma un ángulo recto con el cateto b y, por lo tanto, forma un triángulo recto. Los lados de un triángulo recto pueden resolverse usando el <em>teorema de Pitágoras</em>, descrito en [1].

Usando [1] y despejando a, tenemos:

\\ c^2 = a^2 + b^2

Restamos \\ b^2 de ambos lados de la igualdad:

\\ c^2 - b^2 = a^2 + b^2 - b^2

\\ c^2 - b^2 = a^2 + 0

\\ c^2 - b^2 = a^2

Luego

\\ a^2 = c^2 - b^2

Extrayendo la <em>raíz cuadrada</em> en cada lado de la igualdad:

\\ \sqrt{a^2} = \sqrt{c^2 - b^2}

Entonces

\\ a = \sqrt{c^2 - b^2}

Asimismo, tenemos que \\ c = 65cm y \\ b = 25cm

Entonces,

\\ a = \sqrt{65^2 - 25^2}

\\ a = \sqrt{4225 - 625}

\\ a = \sqrt{3600}

\\ a = 60cm

De esta manera, el valor de a, o <em>la distancia en línea recta que separa los segmentos paralelos</em>, es 60cm.

Podemos comprobar el resultado anterior haciendo uso del mismo <em>teorema de Pitágoras</em>:

\\ 65^2 = 60^2 + 25^2

\\ 4225 = 3600 + 625

\\ 4225 = 4225

En la figura anexa se aprecia gráficamente lo anteriormente explicado.

3 0
3 years ago
Find x if:<br> 16x2 = -1
Nikolay [14]
The answer is: X = - 1/32
5 0
3 years ago
Other questions:
  • What’s the sum of 8279 and 9473
    15·2 answers
  • Answer this correctly for brainliest and also get a thanks ! Don't answer if you don't know it .
    9·1 answer
  • 19.2 ft by 9.7 what is the area of the room
    10·1 answer
  • Write the equation of a line passing through (5,-3) with a slope of 3/8
    7·1 answer
  • my equation is 12x−9=10x−15 I'm confused on how to solve it I've looked everywhere but ccan'tfind an answer
    7·2 answers
  • What are the solutions of this quadratic equation?<br> x + 10 = 0
    9·1 answer
  • A large university accept 40% of the students who apply. Of the students the university accept, 25% actually enroll. If 10,000 s
    9·2 answers
  • A term may be written in index form to?
    6·1 answer
  • In this unit, you studied a handful of circle theorems. Research to find a circle theorem that wasn’t presented in this unit and
    13·1 answer
  • On the 5th grade class picnic , 50 students share 75 sandwiches equally. How many sandwiches does each student get
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!