Step-by-step explanation:
25(2x) + 25(3y)
25 · (2 · x) + 25 · (3 · y)
(25 · 2) · x + (25 · 3) · y <em>Associative property </em><em>(a · b) · c = a · (b · c)</em>
(25 · 2)x + (25 · 3)y
(2 · 25)x + (3 · 25)y <em>Commutative property</em><em> a · b = b · a</em>
<em>50x + 75y</em>
Answer: ∠ J = 62° , ∠ K = 59° , ∠ L = 59°
<u>Step-by-step explanation:</u>
It is given that it is an Isosceles Triangle, where L J ≅ K J
It follows that ∠ K ≅ ∠ L
⇒ 5x + 24 = 4x + 31
⇒ x + 24 = 31
⇒ x = 7
Input the x-value into either equation to solve for ∠ K & ∠ L:
∠ K = 5x + 24
= 5(7) + 24
= 35 + 24
= 59
∠ K ≅ ∠ L ⇒ ∠ L = 59
Next, find the value of ∠ J:
∠ J + ∠ K + ∠ L = 180 Triangle Sum Theorem
∠ J + 59 + 59 = 180
∠ J + 118 = 180
∠ J = 62