1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
defon
2 years ago
6

1) I can buy 18 bananas for $4.50. If I have $20 how

Mathematics
2 answers:
WINSTONCH [101]2 years ago
6 0

Answer:

$4.50 / 18 = $0.25 per Banana

$20 / $0.25  = 80 Bananas

Step-by-step explanation:

algol132 years ago
4 0

Answer:

80

Step-by-step explanation:

You might be interested in
What does X equal to ?
Ierofanga [76]

Answer:

x= 15

Step-by-step explanation:

We can use cross products to solve this problem

7     2x+5

-- = --------

3       x

7x = 3(2x+5)

Distribute

7x = 6x +15

Subtract 6x from each side

7x-6x = 6x-6x+15

x = 15

6 0
3 years ago
If you deposit $100 in a savings account that earns simple interest at a rate of 1.5% per year how much interest will you have e
Alexus [3.1K]
Equation: L=P*R*T

P=100
R=1.5%=0.015
T=5

Multiply and you get 7.5 as the interest.

7 0
3 years ago
Read 2 more answers
If <img src="https://tex.z-dn.net/?f=%5Cmathrm%20%7By%20%3D%20%28x%20%2B%20%5Csqrt%7B1%2Bx%5E%7B2%7D%7D%29%5E%7Bm%7D%7D" id="Tex
Harman [31]

Answer:

See below for proof.

Step-by-step explanation:

<u>Given</u>:

y=\left(x+\sqrt{1+x^2}\right)^m

<u>First derivative</u>

\boxed{\begin{minipage}{5.4 cm}\underline{Chain Rule for Differentiation}\\\\If  $f(g(x))$ then:\\\\$\dfrac{\text{d}y}{\text{d}x}=f'(g(x))\:g'(x)$\\\end{minipage}}

<u />

<u />\boxed{\begin{minipage}{5 cm}\underline{Differentiating $x^n$}\\\\If  $y=x^n$, then $\dfrac{\text{d}y}{\text{d}x}=xn^{n-1}$\\\end{minipage}}

<u />

\begin{aligned} y_1=\dfrac{\text{d}y}{\text{d}x} & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(1+\dfrac{2x}{2\sqrt{1+x^2}} \right)\\\\ & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(1+\dfrac{x}{\sqrt{1+x^2}} \right) \\\\ & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(\dfrac{x+\sqrt{1+x^2}}{\sqrt{1+x^2}} \right)\\\\ & = \dfrac{m}{\sqrt{1+x^2}} \cdot \left(x+\sqrt{1+x^2}\right)^{m-1}  \cdot \left(x+\sqrt{1+x^2}\right)\\\\ & = \dfrac{m}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m\end{aligned}

<u>Second derivative</u>

<u />

\boxed{\begin{minipage}{5.5 cm}\underline{Product Rule for Differentiation}\\\\If  $y=uv$  then:\\\\$\dfrac{\text{d}y}{\text{d}x}=u\dfrac{\text{d}v}{\text{d}x}+v\dfrac{\text{d}u}{\text{d}x}$\\\end{minipage}}

\textsf{Let }u=\dfrac{m}{\sqrt{1+x^2}}

\implies \dfrac{\text{d}u}{\text{d}x}=-\dfrac{mx}{\left(1+x^2\right)^\frac{3}{2}}

\textsf{Let }v=\left(x+\sqrt{1+x^2}\right)^m

\implies \dfrac{\text{d}v}{\text{d}x}=\dfrac{m}{\sqrt{1+x^2}} \cdot \left(x+\sqrt{1+x^2}\right)^m

\begin{aligned}y_2=\dfrac{\text{d}^2y}{\text{d}x^2}&=\dfrac{m}{\sqrt{1+x^2}}\cdot\dfrac{m}{\sqrt{1+x^2}}\cdot\left(x+\sqrt{1+x^2}\right)^m+\left(x+\sqrt{1+x^2}\right)^m\cdot-\dfrac{mx}{\left(1+x^2\right)^\frac{3}{2}}\\\\&=\dfrac{m^2}{1+x^2}\cdot\left(x+\sqrt{1+x^2}\right)^m+\left(x+\sqrt{1+x^2}\right)^m\cdot-\dfrac{mx}{\left(1+x^2\right)\sqrt{1+x^2}}\\\\ &=\left(x+\sqrt{1+x^2}\right)^m\left(\dfrac{m^2}{1+x^2}-\dfrac{mx}{\left(1+x^2\right)\sqrt{1+x^2}}\right)\\\\\end{aligned}

              = \dfrac{\left(x+\sqrt{1+x^2}\right)^m}{1+x^2}\right)\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)

<u>Proof</u>

  (x^2+1)y_2+xy_1-m^2y

= (x^2+1) \dfrac{\left(x+\sqrt{1+x^2}\right)^m}{1+x^2}\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)+\dfrac{mx}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m-m^2\left(x+\sqrt{1+x^2\right)^m

= \left(x+\sqrt{1+x^2}\right)^m\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)+\dfrac{mx}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m-m^2\left(x+\sqrt{1+x^2\right)^m

= \left(x+\sqrt{1+x^2}\right)^m\left[m^2-\dfrac{mx}{\sqrt{1+x^2}}+\dfrac{mx}{\sqrt{1+x^2}}-m^2\right]

= \left(x+\sqrt{1+x^2}\right)^m\left[0]

= 0

8 0
1 year ago
In kite ABCD, mZBAE = 28º and mZBCE = 58°. Find mZABE.<br> B<br> E<br> А<br> С<br> D<br> mLABE =
Digiron [165]

Answer:

m∠ABE = 62°

Step-by-step explanation:

Since, the given quadrilateral is a kite, diagonals will intersect at 90°.

Therefore, m∠AEB = m∠CEB = 90°

m∠BAE = 28° [Given]

m∠BCE = 58° [Given]

From ΔABE,

m∠BAE + m∠BEA + m∠ABE = 180°

28° + 90° + m∠ABE = 180°

m∠ABE = 180° - 118°

             = 62°

Therefore, measure of angle ABE = 62°.

3 0
3 years ago
If two lemons cost 15 cents, how many can be bought for 60 cents?
KiRa [710]

Cost of 1 lemon = 15/2 = 7.5 cents

Cost of 60 lemons = 7.5 * 60 = 450 cents or $4 50

6 0
3 years ago
Read 2 more answers
Other questions:
  • Which is the equation of a line that is parallel to the line represented by y= 7/6 x + 4 ?
    7·2 answers
  • The graph for the equation y=-2x+1 is shown below.
    12·1 answer
  • Shawna is practicing typing. She types 456 words in 10 minutes.If she types the same number of words each minute how many words
    12·2 answers
  • Whats mc mean in mc2
    14·1 answer
  • Jiijijijghjgfuhguyguygyguyguygyugyug
    6·2 answers
  • 50 points! Find the coordinates of the centroid of the triangle with the vertices A(-6,8), B(-3,1),andC(0,3). Random answers wil
    8·2 answers
  • A can of chicken stock measures 3.5 inches in diameter and 5 inches tall. What is the volume of the can? Use 3.14 for pi. Round
    6·1 answer
  • Simplified<br> 3.2-5.1n-2n+8=
    12·2 answers
  • Please solve correctly
    11·1 answer
  • A multiple choice test contains 25 questions with 5 answer choices. What is the probability of correctly answering 8 questions i
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!