How to solve your problem
Topics: Algebra
−
1
2
3
⋅
(
−
8
+
(
−
4
)
−
6
)
+
2
−
12
3
⋅
x
(
−
8
+
(
−
4
)
−
6
)
+
2
3−12⋅x(−8+(−4)−6)+2
Simplify
1
Divide the numbers
−
1
2
3
⋅
(
−
8
+
(
−
4
)
−
6
)
+
2
−
12
3
⋅
x
(
−
8
+
(
−
4
)
−
6
)
+
2
3−12⋅x(−8+(−4)−6)+2
−
4
(
−
8
+
(
−
4
)
−
6
)
+
2
−
4
x
(
−
8
+
(
−
4
)
−
6
)
+
2
−4x(−8+(−4)−6)+2
2
Evaluate the exponent
−
4
(
−
8
+
(
−
4
)
−
6
)
+
2
−
4
x
(
−
8
+
(
−
4
)
−
6
)
+
2
−4x(−8+(−4)−6)+2
−
4
(
−
8
+
1
4
0
9
6
)
+
2
−
4
x
(
−
8
+
1
4096
)
+
2
−4x(−8+40961)+2
3
Add the numbers
−
4
(
−
8
+
1
4
0
9
6
)
+
2
−
4
x
(
−
8
+
1
4096
)
+
2
−4x(−8+40961)+2
−
4
(
−
3
2
7
6
7
4
0
9
6
)
+
2
−
4
x
(
−
32767
4096
)
+
2
−4x(−409632767)+2
4
Multiply the numbers
−
4
(
−
3
2
7
6
7
4
0
9
6
)
+
2
−
4
x
(
−
32767
4096
)
+
2
−4x(−409632767)+2
3
2
7
6
7
1
0
2
4
+
2
32767
1024
x
+
2
102432767x+2
5
Combine multiplied terms into a single fraction
3
2
7
6
7
1
0
2
4
+
2
32767
1024
x
+
2
102432767x+2
3
2
7
6
7
1
0
2
4
+
2
32767
x
1024
+
2
102432767x+2
6
Find common denominator
3
2
7
6
7
1
0
2
4
+
2
32767
x
1024
+
2
102432767x+2
3
2
7
6
7
1
0
2
4
+
1
0
2
4
⋅
2
1
0
2
4
32767
x
1024
+
1024
⋅
2
1024
102432767x+10241024⋅2
7
Combine fractions with common denominator
3
2
7
6
7
1
0
2
4
+
1
0
2
4
⋅
2
1
0
2
4
32767
x
1024
+
1024
⋅
2
1024
102432767x+10241024⋅2
3
2
7
6
7
+
1
0
2
4
⋅
2
1
0
2
4
32767
x
+
1024
⋅
2
1024
102432767x+1024⋅2
8
Multiply the numbers
3
2
7
6
7
+
1
0
2
4
⋅
2
1
0
2
4
32767
x
+
1024
⋅
2
1024
102432767x+1024⋅2
3
2
7
6
7
+
2
0
4
8
1
0
2
4
32767
x
+
2048
1024
102432767x+2048
Answer:
Step-by-step explanation:
y-4x=6
y=6+4x, using this value in 2y-3x=4 gives
2(6+4x)-3x=4
12+8x-3x=4
5x+12=4
5x=-8
x= -8/5= -1.6, making y=6+4x become
y=6+4(-1.6)
y= -0.4, so the solution is the point
(-1.6, -0.4)
12 is the right answer bc it's 1/3x4
Answer:
(36^t) / (6^(t^2)) is nonequivalent
(6^(t^2)) / (36^t) is equivalent
(6^(t^2)) * 36^t is nonequivalent
Step-by-step explanation:
We can use the exponential quotient law for this problem.
a^x / a^y = a^x - y
(6^(t^2)) / (6^2t) = (6^(t^2)) / (36^t)