Answer:
Chromosomes
Explanation:
A karyotype is an individual's collection of chromosomes
Hope this helps!
Plz click the Thanks button :)
Jayla
Answer:
Explanation:
a. Oxidation : 2O + 4e^- ------> 2O^2-
b. Reduction: 2Sr - 4e- -------> Sr^2+
c. Balanced redox reaction
2Sr + O2 ------------> 2Sr O
Oxidation and reduction can be defined by various means, addition of oxygen, removal of hydrogen, removal of electrons. For this reaction, this definition is used, oxidation is the loss of electrons while reduction is the gaining of electrons.
In (a) oxidation half reaction, the valency of oxygen is zero and then moves into lossing two electrons resulting into -2 valency.
In (b) reduction half reaction, the valency of Sr is zero and gains electrons resulting into valency of 2.
In the overall redox reaction, Sr and O2 with valency of 0 each reacts together and form SrO with valency of 2 and -2 respectively, which gives 0 and then balances the equation.
Natural selection can benefit a species in many ways. One way natural selection benefits a species is by helping a species adapt to constant changing environments and biomes. natural selection can also benefit a species by dying of the weaker links of a species and adapting the mutated species. hope this helped! :)
Its both A and C because both A and C have only one type each so it can only be those two :)
1.4715 atm is the pressure of the sample 1.33 moles of fluorine gas that is contained in a 23.3 L container at 314 K.
What is an ideal equation?
The ideal gas equation, pV = nRT, is an equation used to calculate either the pressure, volume, temperature or number of moles of a gas. The terms are: p = pressure, in pascals (Pa).
Given data:
Volume (V) = 23.3 L
Number of mole (n) = 1.33 moles
Temperature (T) = 314 K
Gas constant (R) = 0.821 atm.L/Kmol
Pressure (P) =?
The pressure inside the container can be obtained by using the ideal gas equation as illustrated below:
PV = nRT
P × 23.3 L = 1.33 moles × 0.0821 ×314 K
P = 1.4715 atm
Therefore, the pressure of the sample is 1.4715 atm.
Learn more about the ideal gas equation:
brainly.com/question/23826793
SPJ1