We have a solution of NaOH and H₂CO₃
First, NaOH will dissociate into Na⁺ and OH⁻ ions
The Na⁺ ion will substitute one of the Hydrogen atoms on H₂CO₃ to form NaHCO₃
The H⁺ released from the substitution will bond with the OH⁻ ion to form a water molecule
If there were to be another NaOH molecule, a similar substitution will take place, substituting the second hydrogen from H₂CO₃ as well to form Na₂CO₃
Answer:
Correct answer is: "Cold Water"
Explanation:
EDGE 2020
Charles law gives the relationship between temperature and volume of gases. It states that the volume of gas is directly proportional to temperature at constant pressure.
V / T = k
where V - volume and T - temperature in Kelvin and k - constant

where parameters for the first instance are on the left side and parameters for the second instance are on the right side of the equation
T1 - 20 °C + 273 = 293 K
substituting these values in the equation

T = 586 K
temperature in celsius = 586 K - 273 = 313 °C
new temperature is 313 °C
<u>Answer:</u> The correct answer is Option b.
<u>Explanation:</u>
To calculate the amount of heat absorbed or released, we use the following equation:
.....(1)
where, q = amount of heat absorbed or released.
m = mass of the substance
c = heat capacity of water = 4.186 J/g ° C
= Change in temperature
We are given:
![m=30g\\\Delta T=[40-0]^oC=40^oC\\q=?J](https://tex.z-dn.net/?f=m%3D30g%5C%5C%5CDelta%20T%3D%5B40-0%5D%5EoC%3D40%5EoC%5C%5Cq%3D%3FJ)
Putting values in equation 1, we get:

q = 5023.2 J
We are given:
![m=40g\\\Delta T=[40-30]^oC=10^oC\\q=?J](https://tex.z-dn.net/?f=m%3D40g%5C%5C%5CDelta%20T%3D%5B40-30%5D%5EoC%3D10%5EoC%5C%5Cq%3D%3FJ)
Putting values in equation 1, we get:

q = 1674.4 J
Heat gained by Trial 1 than trial 2 = 
Hence, the amount of heat gained in Trial 1 about 3347 J more than the heat released in Trial 2.
Thus, the correct answer is Option b.
Saturn's rings are made of ice and rock. These pieces vary in size. Some are as small as a grain of sand. Others are as large as a house. The rings of Saturn are the most extensive ring system of any planet in the Solar System. They consist of countless small particles, ranging in size from micrometers to meters, that orbit around Saturn. They are found around the planet